Perspectives in mathematical sciences . I [[electronic resource] /] / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-75809-8
9786612758096 981-4273-63-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Entropy and Martingale K. B. Athreya and M. G. Nadkarni; 1.1. Introduction; 1.2. Relative Entropy and Gibbs-Boltzmann Measures; 1.2.1. Entropy Maximization Results; 1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution; 1.2.3. Relative Entropy and Conditioning; 1.3. Measure Free Martingales, Weak Martingales, Martingales; 1.3.1. Finite Range Case; 1.3.2. The General Case; 1.4. Equivalent Martingale Measures; References; 2. Marginal Quantiles: Asymptotics for Functions of Order Statistics G. J. Babu; 2.1. Introduction; 2.1.1. Streaming Data
2.2. Marginal Quantiles 2.2.1. Joint Distribution of Marginal Quantiles; 2.2.2. Weak Convergence of Quantile Process; 2.3. Regression under Lost Association; 2.4. Mean of Functions of Order Statistics; 2.5. Examples; Acknowledgment; References; 3. Statistics on Manifolds with Applications to Shape Spaces R. Bhattacharya and A. Bhattacharya; 3.1. Introduction; 3.2. Geometry of Shape Manifolds; 3.2.1. The Real Projective Space RPd; 3.2.2. Kendall's (Direct Similarity) Shape Spaces Σk; 3.2.3. Reflection (Similarity) Shape Spaces RSk m; 3.2.4. Affine Shape Spaces ASk m 3.2.5. Projective Shape Spaces PΣk m3.3. Fréchet Means on Metric Spaces; 3.4. Extrinsic Means on Manifolds; 3.4.1. Asymptotic Distribution of the Extrinsic Sample Mean; 3.5. Intrinsic Means on Manifolds; 3.6. Applications; 3.6.1. Sd; 3.6.1.1. Extrinsic Mean on Sd; 3.6.1.2. Intrinsic Mean on Sd; 3.6.2. RPd; 3.6.2.1. Extrinsic Mean on RPd; 3.6.2.2. Intrinsic Mean on RPd; 3.6.3. Σk m; 3.6.4. Σk2; 3.6.4.1. Extrinsic Mean on Σk2; 3.6.4.2. Intrinsic Mean on Σk2; 3.6.5. RΣk m; 3.6.6. AΣk m; 3.6.7. P0Σk m; 3.7. Examples; 3.7.1. Example 1: Gorilla Skulls; 3.7.2. Example 2: Schizophrenic Children 3.7.3. Example 3: Glaucoma Detection Acknowledgment; References; 4. Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo V. S. Borkar; 4.1. Introduction; 4.2. Stochastic Approximation; 4.3. Estimating Stationary Averages; 4.4. Function Approximation; 4.5. Estimating Stationary Distribution; 4.6. Acceleration Techniques; 4.7. Future Directions; References; 5. Factors, Roots and Embeddings of Measures on Lie Groups S. G. Dani; 5.1. Introduction; 5.2. Some Basic Properties of Factors and Roots; 5.3. Factor Sets; 5.4. Compactness; 5.5. Roots; 5.6. One-Parameter Semigroups References 6. Higher Criticism in the Context of Unknown Distribution, Non-independence and Classification A. Delaigle and P. Hall; 6.1. Introduction; 6.2. Methodology; 6.2.1. Higher-criticism signal detection; 6.2.2. Generalising and adapting to an unknown null distribution; 6.2.3. Classifiers based on higher criticism; 6.3. Theoretical Properties; 6.3.1. Effectiveness of approximation to hcW by hcW; 6.3.2. Removing the assumption of independence; 6.3.3. Delineating good performance; 6.4. Further Results; 6.4.1. Alternative constructions of hcW and hcW 6.4.2. Advantages of incorporating the threshold |
Record Nr. | UNINA-9910456150303321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Perspectives in mathematical sciences . II [[electronic resource] /] / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (281 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-75810-1
9786612758102 981-4273-65-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Use of Resultants and Approximate Roots for Doing the Jacobian Problem S. S. Abhyankar; 1.1. Introduction; 1.2. Basic Technique; 1.3. Resultants and Discriminants; 1.4. Real Numbers and Approximate Roots; Epilogue; References; 2. Monodromy of Principal Bundles I. Biswas and A. J. Parameswaran; 2.1. Introduction; 2.2. Tannakian Category; 2.3. A Tannakian Category for a Pointed Curve; 2.4. Monodromy of a Strongly Semistable Principal Bundles; 2.5. More on Monodromy; 2.6. Bundles on Higher Dimensional Varieties; References
3. Oligomorphic Permutation Groups P. J. Cameron3.1. Introduction; 3.1.1. Permutation groups; 3.1.2. Oligomorphic permutation groups; 3.1.3. Topology; 3.1.4. Cycle index; 3.2. Connections; 3.2.1. Model theory; 3.2.2. Combinatorial enumeration; 3.3. Constructions; 3.3.1. Direct and wreath products; 3.3.2. Other examples; 3.4. Growth Rates; 3.5. Graded Algebras; 3.6. Group Structure; References; 4. Descriptive Set Theory and the Geometry of Banach Spaces G. Godefroy; 4.1. Introduction; 4.2. A Short Survey on Analytic Sets; 4.3. Bossard's Coding of Separable Banach Spaces; 4.4. Coanalytic Ranks 4.5. A New Direction: The Converse StatementsAcknowledgment; References; 5. Multiplicity-Free Homogeneous Operators in the Cowen- Douglas Class A. Korányi and G. Misra; 5.1. Background Material; 5.2. Computation of the Multipliers for the Unit Disc; 5.3. Conditions Imposed by the Reproducing Kernel; 5.4. The Multiplicity-Free Case; 5.5. Examples; References; 6. The Standard Conjectures on Algebraic Cycles M. S. Narasimhan; 6.1. The Case of Complex Projective Varieties; 6.2. Standard Conjectures in Abstract Algebraic Geometry; References 7. On the Classification of Binary Shifts on the Hyperfinite II 1 Factor G. L. Price7.1. Introduction; 7.2. Preliminaries; 7.3. Bitstreams and Polynomials; 7.4. Counting Polynomials with Symmetry; 7.5. Conjugacy Classes of Binary Shifts; References; 8. Symmetric and Quasi-Symmetric Designs and Strongly Regular Graphs S. S. Sane; 8.1. Introduction and Preliminaries; 8.2. Symmetric Designs; 8.3. Strongly Regular Graphs; 8.4. Quasi-Symmetric Designs; Acknowledgments; References; 9. Perturbation Determinant, Krein's Shift Function and Index Theorem K. B. Sinha; 9.1. Introduction 9.2. Perturbation Determinant9.3. Witten Index and Its Invariance; 9.4. Krein's Shift Function; 9.5. Application to Quantum Mechanics and Generalized Levinson's Theorem; References; 10. Zero Cycles and Complete Intersection Points on A.ne Varieties V. Srinivas; References; 11. Root Numbers and Rational Points on Elliptic Curves R. Sujatha; 11.1. Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture; 11.2. Congruent Number Problem; 11.3. Root Numbers and the Parity Conjecture; 11.4. Recent Results; 11.5. Examples and Applications; References 12. von Neumann Algebras and Ergodic Theory V. S. Sunder |
Record Nr. | UNINA-9910456151203321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Perspectives in mathematical sciences . I [[electronic resource] /] / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
ISBN |
1-282-75809-8
9786612758096 981-4273-63-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Entropy and Martingale K. B. Athreya and M. G. Nadkarni; 1.1. Introduction; 1.2. Relative Entropy and Gibbs-Boltzmann Measures; 1.2.1. Entropy Maximization Results; 1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution; 1.2.3. Relative Entropy and Conditioning; 1.3. Measure Free Martingales, Weak Martingales, Martingales; 1.3.1. Finite Range Case; 1.3.2. The General Case; 1.4. Equivalent Martingale Measures; References; 2. Marginal Quantiles: Asymptotics for Functions of Order Statistics G. J. Babu; 2.1. Introduction; 2.1.1. Streaming Data
2.2. Marginal Quantiles 2.2.1. Joint Distribution of Marginal Quantiles; 2.2.2. Weak Convergence of Quantile Process; 2.3. Regression under Lost Association; 2.4. Mean of Functions of Order Statistics; 2.5. Examples; Acknowledgment; References; 3. Statistics on Manifolds with Applications to Shape Spaces R. Bhattacharya and A. Bhattacharya; 3.1. Introduction; 3.2. Geometry of Shape Manifolds; 3.2.1. The Real Projective Space RPd; 3.2.2. Kendall's (Direct Similarity) Shape Spaces Σk; 3.2.3. Reflection (Similarity) Shape Spaces RSk m; 3.2.4. Affine Shape Spaces ASk m 3.2.5. Projective Shape Spaces PΣk m3.3. Fréchet Means on Metric Spaces; 3.4. Extrinsic Means on Manifolds; 3.4.1. Asymptotic Distribution of the Extrinsic Sample Mean; 3.5. Intrinsic Means on Manifolds; 3.6. Applications; 3.6.1. Sd; 3.6.1.1. Extrinsic Mean on Sd; 3.6.1.2. Intrinsic Mean on Sd; 3.6.2. RPd; 3.6.2.1. Extrinsic Mean on RPd; 3.6.2.2. Intrinsic Mean on RPd; 3.6.3. Σk m; 3.6.4. Σk2; 3.6.4.1. Extrinsic Mean on Σk2; 3.6.4.2. Intrinsic Mean on Σk2; 3.6.5. RΣk m; 3.6.6. AΣk m; 3.6.7. P0Σk m; 3.7. Examples; 3.7.1. Example 1: Gorilla Skulls; 3.7.2. Example 2: Schizophrenic Children 3.7.3. Example 3: Glaucoma Detection Acknowledgment; References; 4. Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo V. S. Borkar; 4.1. Introduction; 4.2. Stochastic Approximation; 4.3. Estimating Stationary Averages; 4.4. Function Approximation; 4.5. Estimating Stationary Distribution; 4.6. Acceleration Techniques; 4.7. Future Directions; References; 5. Factors, Roots and Embeddings of Measures on Lie Groups S. G. Dani; 5.1. Introduction; 5.2. Some Basic Properties of Factors and Roots; 5.3. Factor Sets; 5.4. Compactness; 5.5. Roots; 5.6. One-Parameter Semigroups References 6. Higher Criticism in the Context of Unknown Distribution, Non-independence and Classification A. Delaigle and P. Hall; 6.1. Introduction; 6.2. Methodology; 6.2.1. Higher-criticism signal detection; 6.2.2. Generalising and adapting to an unknown null distribution; 6.2.3. Classifiers based on higher criticism; 6.3. Theoretical Properties; 6.3.1. Effectiveness of approximation to hcW by hcW; 6.3.2. Removing the assumption of independence; 6.3.3. Delineating good performance; 6.4. Further Results; 6.4.1. Alternative constructions of hcW and hcW 6.4.2. Advantages of incorporating the threshold |
Record Nr. | UNINA-9910780715703321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Perspectives in mathematical sciences . II [[electronic resource] /] / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (281 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
ISBN |
1-282-75810-1
9786612758102 981-4273-65-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Use of Resultants and Approximate Roots for Doing the Jacobian Problem S. S. Abhyankar; 1.1. Introduction; 1.2. Basic Technique; 1.3. Resultants and Discriminants; 1.4. Real Numbers and Approximate Roots; Epilogue; References; 2. Monodromy of Principal Bundles I. Biswas and A. J. Parameswaran; 2.1. Introduction; 2.2. Tannakian Category; 2.3. A Tannakian Category for a Pointed Curve; 2.4. Monodromy of a Strongly Semistable Principal Bundles; 2.5. More on Monodromy; 2.6. Bundles on Higher Dimensional Varieties; References
3. Oligomorphic Permutation Groups P. J. Cameron3.1. Introduction; 3.1.1. Permutation groups; 3.1.2. Oligomorphic permutation groups; 3.1.3. Topology; 3.1.4. Cycle index; 3.2. Connections; 3.2.1. Model theory; 3.2.2. Combinatorial enumeration; 3.3. Constructions; 3.3.1. Direct and wreath products; 3.3.2. Other examples; 3.4. Growth Rates; 3.5. Graded Algebras; 3.6. Group Structure; References; 4. Descriptive Set Theory and the Geometry of Banach Spaces G. Godefroy; 4.1. Introduction; 4.2. A Short Survey on Analytic Sets; 4.3. Bossard's Coding of Separable Banach Spaces; 4.4. Coanalytic Ranks 4.5. A New Direction: The Converse StatementsAcknowledgment; References; 5. Multiplicity-Free Homogeneous Operators in the Cowen- Douglas Class A. Korányi and G. Misra; 5.1. Background Material; 5.2. Computation of the Multipliers for the Unit Disc; 5.3. Conditions Imposed by the Reproducing Kernel; 5.4. The Multiplicity-Free Case; 5.5. Examples; References; 6. The Standard Conjectures on Algebraic Cycles M. S. Narasimhan; 6.1. The Case of Complex Projective Varieties; 6.2. Standard Conjectures in Abstract Algebraic Geometry; References 7. On the Classification of Binary Shifts on the Hyperfinite II 1 Factor G. L. Price7.1. Introduction; 7.2. Preliminaries; 7.3. Bitstreams and Polynomials; 7.4. Counting Polynomials with Symmetry; 7.5. Conjugacy Classes of Binary Shifts; References; 8. Symmetric and Quasi-Symmetric Designs and Strongly Regular Graphs S. S. Sane; 8.1. Introduction and Preliminaries; 8.2. Symmetric Designs; 8.3. Strongly Regular Graphs; 8.4. Quasi-Symmetric Designs; Acknowledgments; References; 9. Perturbation Determinant, Krein's Shift Function and Index Theorem K. B. Sinha; 9.1. Introduction 9.2. Perturbation Determinant9.3. Witten Index and Its Invariance; 9.4. Krein's Shift Function; 9.5. Application to Quantum Mechanics and Generalized Levinson's Theorem; References; 10. Zero Cycles and Complete Intersection Points on A.ne Varieties V. Srinivas; References; 11. Root Numbers and Rational Points on Elliptic Curves R. Sujatha; 11.1. Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture; 11.2. Congruent Number Problem; 11.3. Root Numbers and the Parity Conjecture; 11.4. Recent Results; 11.5. Examples and Applications; References 12. von Neumann Algebras and Ergodic Theory V. S. Sunder |
Record Nr. | UNINA-9910780715503321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Perspectives in mathematical sciences . I / / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
ISBN |
1-282-75809-8
9786612758096 981-4273-63-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Entropy and Martingale K. B. Athreya and M. G. Nadkarni; 1.1. Introduction; 1.2. Relative Entropy and Gibbs-Boltzmann Measures; 1.2.1. Entropy Maximization Results; 1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution; 1.2.3. Relative Entropy and Conditioning; 1.3. Measure Free Martingales, Weak Martingales, Martingales; 1.3.1. Finite Range Case; 1.3.2. The General Case; 1.4. Equivalent Martingale Measures; References; 2. Marginal Quantiles: Asymptotics for Functions of Order Statistics G. J. Babu; 2.1. Introduction; 2.1.1. Streaming Data
2.2. Marginal Quantiles 2.2.1. Joint Distribution of Marginal Quantiles; 2.2.2. Weak Convergence of Quantile Process; 2.3. Regression under Lost Association; 2.4. Mean of Functions of Order Statistics; 2.5. Examples; Acknowledgment; References; 3. Statistics on Manifolds with Applications to Shape Spaces R. Bhattacharya and A. Bhattacharya; 3.1. Introduction; 3.2. Geometry of Shape Manifolds; 3.2.1. The Real Projective Space RPd; 3.2.2. Kendall's (Direct Similarity) Shape Spaces Σk; 3.2.3. Reflection (Similarity) Shape Spaces RSk m; 3.2.4. Affine Shape Spaces ASk m 3.2.5. Projective Shape Spaces PΣk m3.3. Fréchet Means on Metric Spaces; 3.4. Extrinsic Means on Manifolds; 3.4.1. Asymptotic Distribution of the Extrinsic Sample Mean; 3.5. Intrinsic Means on Manifolds; 3.6. Applications; 3.6.1. Sd; 3.6.1.1. Extrinsic Mean on Sd; 3.6.1.2. Intrinsic Mean on Sd; 3.6.2. RPd; 3.6.2.1. Extrinsic Mean on RPd; 3.6.2.2. Intrinsic Mean on RPd; 3.6.3. Σk m; 3.6.4. Σk2; 3.6.4.1. Extrinsic Mean on Σk2; 3.6.4.2. Intrinsic Mean on Σk2; 3.6.5. RΣk m; 3.6.6. AΣk m; 3.6.7. P0Σk m; 3.7. Examples; 3.7.1. Example 1: Gorilla Skulls; 3.7.2. Example 2: Schizophrenic Children 3.7.3. Example 3: Glaucoma Detection Acknowledgment; References; 4. Reinforcement Learning - A Bridge Between Numerical Methods and Monte Carlo V. S. Borkar; 4.1. Introduction; 4.2. Stochastic Approximation; 4.3. Estimating Stationary Averages; 4.4. Function Approximation; 4.5. Estimating Stationary Distribution; 4.6. Acceleration Techniques; 4.7. Future Directions; References; 5. Factors, Roots and Embeddings of Measures on Lie Groups S. G. Dani; 5.1. Introduction; 5.2. Some Basic Properties of Factors and Roots; 5.3. Factor Sets; 5.4. Compactness; 5.5. Roots; 5.6. One-Parameter Semigroups References 6. Higher Criticism in the Context of Unknown Distribution, Non-independence and Classification A. Delaigle and P. Hall; 6.1. Introduction; 6.2. Methodology; 6.2.1. Higher-criticism signal detection; 6.2.2. Generalising and adapting to an unknown null distribution; 6.2.3. Classifiers based on higher criticism; 6.3. Theoretical Properties; 6.3.1. Effectiveness of approximation to hcW by hcW; 6.3.2. Removing the assumption of independence; 6.3.3. Delineating good performance; 6.4. Further Results; 6.4.1. Alternative constructions of hcW and hcW 6.4.2. Advantages of incorporating the threshold |
Record Nr. | UNINA-9910825594203321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Perspectives in mathematical sciences . II / / editors, N.S. Narasimha Sastry ... [et al.] ; series editor: Sankar K. Pal |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, c2009 |
Descrizione fisica | 1 online resource (281 p.) |
Disciplina |
510
519.2 |
Altri autori (Persone) | Narasimha SastryN. S |
Collana | Statistical science and interdisciplinary research |
Soggetto topico |
Probabilities
Statistics |
ISBN |
1-282-75810-1
9786612758102 981-4273-65-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword; Preface; 1. Use of Resultants and Approximate Roots for Doing the Jacobian Problem S. S. Abhyankar; 1.1. Introduction; 1.2. Basic Technique; 1.3. Resultants and Discriminants; 1.4. Real Numbers and Approximate Roots; Epilogue; References; 2. Monodromy of Principal Bundles I. Biswas and A. J. Parameswaran; 2.1. Introduction; 2.2. Tannakian Category; 2.3. A Tannakian Category for a Pointed Curve; 2.4. Monodromy of a Strongly Semistable Principal Bundles; 2.5. More on Monodromy; 2.6. Bundles on Higher Dimensional Varieties; References
3. Oligomorphic Permutation Groups P. J. Cameron3.1. Introduction; 3.1.1. Permutation groups; 3.1.2. Oligomorphic permutation groups; 3.1.3. Topology; 3.1.4. Cycle index; 3.2. Connections; 3.2.1. Model theory; 3.2.2. Combinatorial enumeration; 3.3. Constructions; 3.3.1. Direct and wreath products; 3.3.2. Other examples; 3.4. Growth Rates; 3.5. Graded Algebras; 3.6. Group Structure; References; 4. Descriptive Set Theory and the Geometry of Banach Spaces G. Godefroy; 4.1. Introduction; 4.2. A Short Survey on Analytic Sets; 4.3. Bossard's Coding of Separable Banach Spaces; 4.4. Coanalytic Ranks 4.5. A New Direction: The Converse StatementsAcknowledgment; References; 5. Multiplicity-Free Homogeneous Operators in the Cowen- Douglas Class A. Korányi and G. Misra; 5.1. Background Material; 5.2. Computation of the Multipliers for the Unit Disc; 5.3. Conditions Imposed by the Reproducing Kernel; 5.4. The Multiplicity-Free Case; 5.5. Examples; References; 6. The Standard Conjectures on Algebraic Cycles M. S. Narasimhan; 6.1. The Case of Complex Projective Varieties; 6.2. Standard Conjectures in Abstract Algebraic Geometry; References 7. On the Classification of Binary Shifts on the Hyperfinite II 1 Factor G. L. Price7.1. Introduction; 7.2. Preliminaries; 7.3. Bitstreams and Polynomials; 7.4. Counting Polynomials with Symmetry; 7.5. Conjugacy Classes of Binary Shifts; References; 8. Symmetric and Quasi-Symmetric Designs and Strongly Regular Graphs S. S. Sane; 8.1. Introduction and Preliminaries; 8.2. Symmetric Designs; 8.3. Strongly Regular Graphs; 8.4. Quasi-Symmetric Designs; Acknowledgments; References; 9. Perturbation Determinant, Krein's Shift Function and Index Theorem K. B. Sinha; 9.1. Introduction 9.2. Perturbation Determinant9.3. Witten Index and Its Invariance; 9.4. Krein's Shift Function; 9.5. Application to Quantum Mechanics and Generalized Levinson's Theorem; References; 10. Zero Cycles and Complete Intersection Points on A.ne Varieties V. Srinivas; References; 11. Root Numbers and Rational Points on Elliptic Curves R. Sujatha; 11.1. Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture; 11.2. Congruent Number Problem; 11.3. Root Numbers and the Parity Conjecture; 11.4. Recent Results; 11.5. Examples and Applications; References 12. von Neumann Algebras and Ergodic Theory V. S. Sunder |
Record Nr. | UNINA-9910811308203321 |
Singapore ; ; London, : World Scientific, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|