Nonadiabatic transition [[electronic resource] ] : concepts, basic theories and applications / / by Hiroki Nakamura |
Autore | Nakamura Hiroki |
Pubbl/distr/stampa | River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xi, 376 p. ) : ill |
Disciplina | 530.4/74 |
Soggetto topico |
Charge exchange
Phase transformations (Statistical physics) |
Soggetto genere / forma | Electronic books. |
ISBN | 981-277-840-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Introduction: what is "nonadiabatic transition"? -- ch. 2. Multi-disciplinarity. 2.1. Physics. 2.2. Chemistry. 2.3. Biology. 2.4. Economics -- ch. 3. Historical survey of theoretical studies. 3.1. Landau-Zener-Stueckelberg theory. 3.2. Rosen-Zener-Demkov theory. 3.3. Nikitin's exponential model. 3.4. Nonadiabatic transition due to Coriolis coupling and dynamical state representation -- ch. 4. Background mathematics. 4.1. Wentzel-Kramers-Brillouin semiclassical theory. 4.2. Stokes phenomenon -- ch. 5. Basic two-state theory for time-independent processes. 5.1. Exact solutions of the linear curve crossing problems. 5.2. Complete semiclassical solutions of general curve crossing problems. 5.3. Non-curve-crossing case. 5.4. Exponential potential model. 5.5. Mathematical implications -- ch. 6. Basic two-state theory for time-dependent processes. 6.1. Exact solution of quadratic potential problem. 6.2. Semiclassical solution in general case. 6.3. Other exactly solvable models -- ch. 7. Two-state problems. 7.1. Diagrammatic technique. 7.2. Inelastic scattering. 7.3. Elastic scattering with resonances and predissociation. 7.4. Perturbed bound states. 7.5. Time-dependent periodic crossing problems -- ch. 8. Effects of dissipation and fluctuation -- ch. 9. Multi-channel problems. 9.1. Exactly solvable models. 9.2. Semiclassical theory of time-independent multi-channel problems. 9.3. Time-dependent problems -- ch. 10. Multi-dimensional problems. 10.1. Classification of surface crossing. 10.2. Reduction to one-dimensional multi-channel problem. 10.3. Semiclassical propagation method -- ch. 11. Complete reflection and bound states in the continuum. 11.1. One NT-type crossing case. 11.2. Diabatically avoided crossing (DAC) case. 11.3. Two NT-type crossings case -- ch. 12. New mechanism of molecular switching. 12.1. Basic idea. 12.2. One-dimensional model. 12.3. Two-dimensional model. 12.4. Numerical examples -- ch. 13. Control of nonadiabatic processes by an external field. 13.1. Control of nonadiabatic transitions by periodically sweeping external field. 13.2. Basic theory. 13.3. Numerical examples. 13.4. Laser control of photodissociation with use of the complete reflection phenomenon -- ch. 14. Conclusions: future perspectives. |
Record Nr. | UNINA-9910450780803321 |
Nakamura Hiroki | ||
River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonadiabatic transition [[electronic resource] ] : concepts, basic theories and applications / / by Hiroki Nakamura |
Autore | Nakamura Hiroki |
Pubbl/distr/stampa | River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xi, 376 p. ) : ill |
Disciplina | 530.4/74 |
Soggetto topico |
Charge exchange
Phase transformations (Statistical physics) |
ISBN | 981-277-840-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Introduction: what is "nonadiabatic transition"? -- ch. 2. Multi-disciplinarity. 2.1. Physics. 2.2. Chemistry. 2.3. Biology. 2.4. Economics -- ch. 3. Historical survey of theoretical studies. 3.1. Landau-Zener-Stueckelberg theory. 3.2. Rosen-Zener-Demkov theory. 3.3. Nikitin's exponential model. 3.4. Nonadiabatic transition due to Coriolis coupling and dynamical state representation -- ch. 4. Background mathematics. 4.1. Wentzel-Kramers-Brillouin semiclassical theory. 4.2. Stokes phenomenon -- ch. 5. Basic two-state theory for time-independent processes. 5.1. Exact solutions of the linear curve crossing problems. 5.2. Complete semiclassical solutions of general curve crossing problems. 5.3. Non-curve-crossing case. 5.4. Exponential potential model. 5.5. Mathematical implications -- ch. 6. Basic two-state theory for time-dependent processes. 6.1. Exact solution of quadratic potential problem. 6.2. Semiclassical solution in general case. 6.3. Other exactly solvable models -- ch. 7. Two-state problems. 7.1. Diagrammatic technique. 7.2. Inelastic scattering. 7.3. Elastic scattering with resonances and predissociation. 7.4. Perturbed bound states. 7.5. Time-dependent periodic crossing problems -- ch. 8. Effects of dissipation and fluctuation -- ch. 9. Multi-channel problems. 9.1. Exactly solvable models. 9.2. Semiclassical theory of time-independent multi-channel problems. 9.3. Time-dependent problems -- ch. 10. Multi-dimensional problems. 10.1. Classification of surface crossing. 10.2. Reduction to one-dimensional multi-channel problem. 10.3. Semiclassical propagation method -- ch. 11. Complete reflection and bound states in the continuum. 11.1. One NT-type crossing case. 11.2. Diabatically avoided crossing (DAC) case. 11.3. Two NT-type crossings case -- ch. 12. New mechanism of molecular switching. 12.1. Basic idea. 12.2. One-dimensional model. 12.3. Two-dimensional model. 12.4. Numerical examples -- ch. 13. Control of nonadiabatic processes by an external field. 13.1. Control of nonadiabatic transitions by periodically sweeping external field. 13.2. Basic theory. 13.3. Numerical examples. 13.4. Laser control of photodissociation with use of the complete reflection phenomenon -- ch. 14. Conclusions: future perspectives. |
Record Nr. | UNINA-9910784806703321 |
Nakamura Hiroki | ||
River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonadiabatic transition : concepts, basic theories and applications / / by Hiroki Nakamura |
Autore | Nakamura Hiroki |
Edizione | [1st ed.] |
Pubbl/distr/stampa | River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xi, 376 p. ) : ill |
Disciplina | 530.4/74 |
Soggetto topico |
Charge exchange
Phase transformations (Statistical physics) |
ISBN | 981-277-840-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Introduction: what is "nonadiabatic transition"? -- ch. 2. Multi-disciplinarity. 2.1. Physics. 2.2. Chemistry. 2.3. Biology. 2.4. Economics -- ch. 3. Historical survey of theoretical studies. 3.1. Landau-Zener-Stueckelberg theory. 3.2. Rosen-Zener-Demkov theory. 3.3. Nikitin's exponential model. 3.4. Nonadiabatic transition due to Coriolis coupling and dynamical state representation -- ch. 4. Background mathematics. 4.1. Wentzel-Kramers-Brillouin semiclassical theory. 4.2. Stokes phenomenon -- ch. 5. Basic two-state theory for time-independent processes. 5.1. Exact solutions of the linear curve crossing problems. 5.2. Complete semiclassical solutions of general curve crossing problems. 5.3. Non-curve-crossing case. 5.4. Exponential potential model. 5.5. Mathematical implications -- ch. 6. Basic two-state theory for time-dependent processes. 6.1. Exact solution of quadratic potential problem. 6.2. Semiclassical solution in general case. 6.3. Other exactly solvable models -- ch. 7. Two-state problems. 7.1. Diagrammatic technique. 7.2. Inelastic scattering. 7.3. Elastic scattering with resonances and predissociation. 7.4. Perturbed bound states. 7.5. Time-dependent periodic crossing problems -- ch. 8. Effects of dissipation and fluctuation -- ch. 9. Multi-channel problems. 9.1. Exactly solvable models. 9.2. Semiclassical theory of time-independent multi-channel problems. 9.3. Time-dependent problems -- ch. 10. Multi-dimensional problems. 10.1. Classification of surface crossing. 10.2. Reduction to one-dimensional multi-channel problem. 10.3. Semiclassical propagation method -- ch. 11. Complete reflection and bound states in the continuum. 11.1. One NT-type crossing case. 11.2. Diabatically avoided crossing (DAC) case. 11.3. Two NT-type crossings case -- ch. 12. New mechanism of molecular switching. 12.1. Basic idea. 12.2. One-dimensional model. 12.3. Two-dimensional model. 12.4. Numerical examples -- ch. 13. Control of nonadiabatic processes by an external field. 13.1. Control of nonadiabatic transitions by periodically sweeping external field. 13.2. Basic theory. 13.3. Numerical examples. 13.4. Laser control of photodissociation with use of the complete reflection phenomenon -- ch. 14. Conclusions: future perspectives. |
Record Nr. | UNINA-9910809986703321 |
Nakamura Hiroki | ||
River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum mechanical tunneling in chemical physics / / Hiroki Nakamura, Gennady Mil'nikov |
Autore | Nakamura Hiroki |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 |
Descrizione fisica | 1 online resource (225 p.) |
Disciplina | 537.6/226 |
Soggetto topico | Tunneling (Physics) |
Soggetto genere / forma | Electronic books. |
ISBN |
0-429-08645-8
1-4665-0731-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Quantum Mechanical Tunneling in Chemical Physics; Copyright; Table of Contents; Preface; 1. Introduction; 2. One-Dimensional Theory; 3. Two-Dimensional Theory; 4. Multidimensional Effects: Peculiar Phenomena; 5. Nonadiabatic Tunneling; 6. Multidimensional Theory of Tunneling Splitting; 7. Numerical Applications to Polyatomic Molecules; 8. Decay of Metastable States; 9. Tunneling in Chemical Reactions; 10. Concluding Remarks and Future Perspectives; Appendix A: Proofs of Equation (2.95) and Equation (2.110); Appendix B: Derivation of Equation (6.80)
Appendix C: Herring Formula in Curved SpaceAppendix D: Derivation of Equation (6.97); Appendix E: Computer Code to Calculate Instanton Trajectory; Appendix F: Derivation of Some Equations in Section 6.4.2; Bibliography; Back Cover |
Record Nr. | UNINA-9910463454003321 |
Nakamura Hiroki | ||
Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum mechanical tunneling in chemical physics / / Hiroki Nakamura, Gennady Mil'nikov |
Autore | Nakamura Hiroki |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 |
Descrizione fisica | 1 online resource (225 p.) |
Disciplina | 537.6/226 |
Soggetto topico | Tunneling (Physics) |
ISBN |
0-429-08645-8
1-4665-0731-4 |
Classificazione | SCI013050SCI078000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Quantum Mechanical Tunneling in Chemical Physics; Copyright; Table of Contents; Preface; 1. Introduction; 2. One-Dimensional Theory; 3. Two-Dimensional Theory; 4. Multidimensional Effects: Peculiar Phenomena; 5. Nonadiabatic Tunneling; 6. Multidimensional Theory of Tunneling Splitting; 7. Numerical Applications to Polyatomic Molecules; 8. Decay of Metastable States; 9. Tunneling in Chemical Reactions; 10. Concluding Remarks and Future Perspectives; Appendix A: Proofs of Equation (2.95) and Equation (2.110); Appendix B: Derivation of Equation (6.80)
Appendix C: Herring Formula in Curved SpaceAppendix D: Derivation of Equation (6.97); Appendix E: Computer Code to Calculate Instanton Trajectory; Appendix F: Derivation of Some Equations in Section 6.4.2; Bibliography; Back Cover |
Record Nr. | UNINA-9910787570603321 |
Nakamura Hiroki | ||
Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum mechanical tunneling in chemical physics / / Hiroki Nakamura, Gennady Mil'nikov |
Autore | Nakamura Hiroki |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 |
Descrizione fisica | 1 online resource (225 p.) |
Disciplina | 537.6/226 |
Soggetto topico | Tunneling (Physics) |
ISBN |
0-429-08645-8
1-4665-0731-4 |
Classificazione | SCI013050SCI078000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Quantum Mechanical Tunneling in Chemical Physics; Copyright; Table of Contents; Preface; 1. Introduction; 2. One-Dimensional Theory; 3. Two-Dimensional Theory; 4. Multidimensional Effects: Peculiar Phenomena; 5. Nonadiabatic Tunneling; 6. Multidimensional Theory of Tunneling Splitting; 7. Numerical Applications to Polyatomic Molecules; 8. Decay of Metastable States; 9. Tunneling in Chemical Reactions; 10. Concluding Remarks and Future Perspectives; Appendix A: Proofs of Equation (2.95) and Equation (2.110); Appendix B: Derivation of Equation (6.80)
Appendix C: Herring Formula in Curved SpaceAppendix D: Derivation of Equation (6.97); Appendix E: Computer Code to Calculate Instanton Trajectory; Appendix F: Derivation of Some Equations in Section 6.4.2; Bibliography; Back Cover |
Record Nr. | UNINA-9910800195703321 |
Nakamura Hiroki | ||
Boca Raton : , : CRC Press, Taylor & Francis Group, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum mechanical tunneling in chemical physics / / Hiroki Nakamura, Gennady Mil'nikov |
Autore | Nakamura Hiroki |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Boca Raton, : CRC Press, Taylor & Francis Group, 2013 |
Descrizione fisica | 1 online resource (225 p.) |
Disciplina | 537.6/226 |
Soggetto topico | Tunneling (Physics) |
ISBN |
0-429-08645-8
1-4665-0731-4 |
Classificazione | SCI013050SCI078000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Quantum Mechanical Tunneling in Chemical Physics; Copyright; Table of Contents; Preface; 1. Introduction; 2. One-Dimensional Theory; 3. Two-Dimensional Theory; 4. Multidimensional Effects: Peculiar Phenomena; 5. Nonadiabatic Tunneling; 6. Multidimensional Theory of Tunneling Splitting; 7. Numerical Applications to Polyatomic Molecules; 8. Decay of Metastable States; 9. Tunneling in Chemical Reactions; 10. Concluding Remarks and Future Perspectives; Appendix A: Proofs of Equation (2.95) and Equation (2.110); Appendix B: Derivation of Equation (6.80)
Appendix C: Herring Formula in Curved SpaceAppendix D: Derivation of Equation (6.97); Appendix E: Computer Code to Calculate Instanton Trajectory; Appendix F: Derivation of Some Equations in Section 6.4.2; Bibliography; Back Cover |
Record Nr. | UNINA-9910823017203321 |
Nakamura Hiroki | ||
Boca Raton, : CRC Press, Taylor & Francis Group, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|