Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
| Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2010 |
| Descrizione fisica | 1 online resource (202 p.) |
| Disciplina | 004.1 |
| Altri autori (Persone) |
NakaharaMikio
RahimiRobabeh SaiTohAkira |
| Collana | Kinki University series on quantum computing |
| Soggetto topico | Quantum computers |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-76355-5
9786612763557 981-4295-84-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Elementary mathematical framework for open quantum d-level systems : decoherence overview / G. Kimura -- Quantum error correction and fault-tolerant quantum computing / F. Gaitan and R. Li -- Composite pulses as geometric quantum gates / Y. Ota and Y. Kondo -- Quantum wipe effect / A. SaiToh, R. Rahimi, M. Nakahara -- Holonomic quantum gates using isospectral deformation of Ising model / M. Bando ... [et al.]. |
| Record Nr. | UNINA-9910455564403321 |
| Hackensack, N.J., : World Scientific, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
| Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2010 |
| Descrizione fisica | 1 online resource (202 p.) |
| Disciplina | 004.1 |
| Altri autori (Persone) |
NakaharaMikio
RahimiRobabeh SaiTohAkira |
| Collana | Kinki University series on quantum computing |
| Soggetto topico | Quantum computers |
| ISBN |
1-282-76355-5
9786612763557 981-4295-84-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Elementary mathematical framework for open quantum d-level systems : decoherence overview / G. Kimura -- Quantum error correction and fault-tolerant quantum computing / F. Gaitan and R. Li -- Composite pulses as geometric quantum gates / Y. Ota and Y. Kondo -- Quantum wipe effect / A. SaiToh, R. Rahimi, M. Nakahara -- Holonomic quantum gates using isospectral deformation of Ising model / M. Bando ... [et al.]. |
| Record Nr. | UNINA-9910780893903321 |
| Hackensack, N.J., : World Scientific, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
| Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2013 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 530.143 |
| Altri autori (Persone) |
NakaharaMikio
WanYidun SasakiYoshitaka |
| Collana | Kinki University series on quantum computing |
| Soggetto topico | Quantum computers |
| Soggetto genere / forma | Electronic books. |
| ISBN |
981-4425-98-2
1-299-13324-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Programme; List of Participants; CONTENTS; Matrix Techniques in Quantum Information Science C.-K. Li; 1. Quantum Operations, Completely Positive Linear Maps; 1.1. Open quantum systems; 1.2. Completely positive linear maps; 1.3. Interpolating problems; 1.4. Completely positive maps on a single matrix; 2. Quantum Error Correction, Higher Rank Numerical Ranges; 2.1. Algebraic approach to quantum error correction; 2.2. Operator approach to quantum error correction; 2.3. Higher rank numerical ranges and basic properties; 2.4. Results on the joint higher rank numerical range
AcknowledgmentReferences; Untying Knots by NMR: Experimental Implementation of an Exponentially Fast Quantum Algorithm for Approximating the Jones Polynomial R. Marx; 1. Mathematical Description of NMR Spectroscopy; 1.1. From the wave function to the product operator formalism; 1.2. Product operator formalism; 1.2.1. Description of spin states; 1.2.2. Description of dynamics; 1.2.3. Description of measurements; 1.3. Density operator formalism; 1.3.1. Description of spin states; 1.3.2. Description of dynamics; 1.3.3. Description of measurements; 1.4. For further reading 2. NMR Quantum Computing Using Pseudopure States2.1. DiVincenzo criteria; 2.1.1. Qubits of an NMR-QC (ensemble of ) spin-1/2-nuclei; 2.1.2. Initialization of an NMR-QC pseudopure state; 2.1.3. Quantum gates: realization in an NMR-QC sequence of r.f. pulses; 2.1.4. Measurement of an NMR-QC expectation value; 2.1.5. Coherence time of an NMR-QC T2 (or longer?); 2.2. Deutsch-Jozsa quantum algorithm on a 2-qubit NMR-QC (PPS); 2.2.1. Alice: initialization; 2.2.2. Bob: function evaluation (1-bit functions); 2.2.3. Alice: measurement 2.3. Chemical Engineering of a 5-qubit NMR quantum computer2.3.1. Design of a suitable compound ("molecule"); 2.3.2. Synthesis of the chosen compound; 2.3.3. Coupling topology of the chosen molecule; 2.4. Deutsch-Jozsa quantum algorithm on a 5-qubit NMR-QC (PPS); 2.4.1. Alice: initialization; 2.4.2. Bob: function evaluation (4-bit functions); 2.4.3. Alice: measurement; 2.5. For further reading; 3. NMR Quantum Computing Using The Thermal State; 3.1. Basic principles of thermal state NMR quantum computing; 3.1.1. Step 1: go from a unitary to the controlled unitary 3.1.2. Step 2: apply cU on excited thermal state of control spin3.1.3. Step 3: measure I1x and I1y; 3.2. Pseudopure state vs. thermal state (pros and cons); 3.3. Deutsch-Jozsa quantum algorithm on a 2-qubit thermal state NMR-QC; 3.3.1. Alice: initialization; 3.3.2. Bob: function evaluation (1-bit functions); 3.3.3. Alice: measurement; 3.4. Deutsch-Jozsa quantum algorithm on a 4-qubit thermal state NMR-QC; 3.4.1. Alice: initialization; 3.4.2. Bob: function evaluation (3-bit functions); 3.4.3. Alice: measurement; 3.5. For further reading; 4. "Untying Knots by NMR"; 4.1. Knot theory 4.1.1. Definition of knots and links |
| Record Nr. | UNINA-9910452738803321 |
| Hackensack, N.J., : World Scientific, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
| Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki |
| Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2013 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 530.143 |
| Altri autori (Persone) |
NakaharaMikio
WanYidun SasakiYoshitaka |
| Collana | Kinki University series on quantum computing |
| Soggetto topico | Quantum computers |
| ISBN |
981-4425-98-2
1-299-13324-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Programme; List of Participants; CONTENTS; Matrix Techniques in Quantum Information Science C.-K. Li; 1. Quantum Operations, Completely Positive Linear Maps; 1.1. Open quantum systems; 1.2. Completely positive linear maps; 1.3. Interpolating problems; 1.4. Completely positive maps on a single matrix; 2. Quantum Error Correction, Higher Rank Numerical Ranges; 2.1. Algebraic approach to quantum error correction; 2.2. Operator approach to quantum error correction; 2.3. Higher rank numerical ranges and basic properties; 2.4. Results on the joint higher rank numerical range
AcknowledgmentReferences; Untying Knots by NMR: Experimental Implementation of an Exponentially Fast Quantum Algorithm for Approximating the Jones Polynomial R. Marx; 1. Mathematical Description of NMR Spectroscopy; 1.1. From the wave function to the product operator formalism; 1.2. Product operator formalism; 1.2.1. Description of spin states; 1.2.2. Description of dynamics; 1.2.3. Description of measurements; 1.3. Density operator formalism; 1.3.1. Description of spin states; 1.3.2. Description of dynamics; 1.3.3. Description of measurements; 1.4. For further reading 2. NMR Quantum Computing Using Pseudopure States2.1. DiVincenzo criteria; 2.1.1. Qubits of an NMR-QC (ensemble of ) spin-1/2-nuclei; 2.1.2. Initialization of an NMR-QC pseudopure state; 2.1.3. Quantum gates: realization in an NMR-QC sequence of r.f. pulses; 2.1.4. Measurement of an NMR-QC expectation value; 2.1.5. Coherence time of an NMR-QC T2 (or longer?); 2.2. Deutsch-Jozsa quantum algorithm on a 2-qubit NMR-QC (PPS); 2.2.1. Alice: initialization; 2.2.2. Bob: function evaluation (1-bit functions); 2.2.3. Alice: measurement 2.3. Chemical Engineering of a 5-qubit NMR quantum computer2.3.1. Design of a suitable compound ("molecule"); 2.3.2. Synthesis of the chosen compound; 2.3.3. Coupling topology of the chosen molecule; 2.4. Deutsch-Jozsa quantum algorithm on a 5-qubit NMR-QC (PPS); 2.4.1. Alice: initialization; 2.4.2. Bob: function evaluation (4-bit functions); 2.4.3. Alice: measurement; 2.5. For further reading; 3. NMR Quantum Computing Using The Thermal State; 3.1. Basic principles of thermal state NMR quantum computing; 3.1.1. Step 1: go from a unitary to the controlled unitary 3.1.2. Step 2: apply cU on excited thermal state of control spin3.1.3. Step 3: measure I1x and I1y; 3.2. Pseudopure state vs. thermal state (pros and cons); 3.3. Deutsch-Jozsa quantum algorithm on a 2-qubit thermal state NMR-QC; 3.3.1. Alice: initialization; 3.3.2. Bob: function evaluation (1-bit functions); 3.3.3. Alice: measurement; 3.4. Deutsch-Jozsa quantum algorithm on a 4-qubit thermal state NMR-QC; 3.4.1. Alice: initialization; 3.4.2. Bob: function evaluation (3-bit functions); 3.4.3. Alice: measurement; 3.5. For further reading; 4. "Untying Knots by NMR"; 4.1. Knot theory 4.1.1. Definition of knots and links |
| Record Nr. | UNINA-9910779580903321 |
| Hackensack, N.J., : World Scientific, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Frontiers in quantum information research : decoherence, entanglement, entropy, MPS and DMRG / / editors, Miklo Nakahara, Shu Tanaka
| Frontiers in quantum information research : decoherence, entanglement, entropy, MPS and DMRG / / editors, Miklo Nakahara, Shu Tanaka |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Melville N.Y., : American Institute of Physics, 2012 |
| Descrizione fisica | 1 online resource (359 p.) |
| Disciplina | 004.1 |
| Altri autori (Persone) |
NakaharaMikio
TanakaShu |
| Collana | Kinki University series on quantum computing |
| Soggetto topico |
Quantum electronics
Information display systems |
| ISBN |
9786613906236
9781283593786 1283593785 9789814407199 9814407194 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Summer School on Decoherence, Entanglement and Entropy Oxford Kobe Institute (Kobe, Japan); Preface; Workshop on Matrix Product State Formulation and Density Matrix Renormalization Group Simulations (MPS&DMRG) Oxford Kobe Institute (Kobe, Japan); List of Participants; Committees; CONTENTS; Part A Summer School on Decoherence, Entanglement and Entropy; Black Holes and Qubits L. Borsten, M. J. Du., and W. Rubens; Overview; 1. Qubits and entanglement; 1.1. A brief introduction to quantum information; 1.1.1. Qubits; 1.2. Entanglement and the Bell inequality
1.2.1. Entanglement dependent quantum information1.3. Entanglement classification; 1.3.1. Bell inequalities without the inequality; 1.3.2. The SLOCC paradigm; 1.3.3. Entanglement measures; 1.3.4. Stochastic LOCC equivalence; 1.4. Bipartite entanglement; 1.4.1. Generic finite-dimensional bipartite systems; 1.4.2. Two qubits; 1.5. Three qubit entanglement; 1.5.1. Local unitary invariants; 1.5.2. Cayley's hyperdeterminant; 1.5.3. Entanglement classification; 2. Black holes in M-theory; 2.1. The road to M-theory; 2.2. Black holes; 2.2.1. Extremal black holes; 2.3. Black hole thermodynamics 2.4. Black holes in supergravity2.5. The STU model; 2.5.1. The Lagrangian; 2.5.2. The Bogomol'nyi spectrum; 2.5.3. Black hole entropy; 3. STU black holes and three qubits; 3.1. Entropy/entanglement correspondence; 3.2. Rebits; 3.3. Classification of N = 2 black holes and three-qubit states; 3.4. Further developments; 3.4.1. Microscopic interpretation; 3.4.2. 4-qubit entanglement and the STU model in D = 3; 4. Beyond the STU model; 4.1. N = 8 supergravity and black holes; 5. E7 and the tripartite entanglement of seven qubits; 6. Fano plane entanglement and the octonions 6.1. Composition algebras6.2. The octonionic tripartite entanglement of seven qubits; 6.3. Subsectors; 7. Cubic Jordan algebras and the Freudenthal triple system; 7.1. Cubic Jordan algebras; 7.2. The Freudenthal triple system; 8. The 3-qubit Freudenthal triple system; 8.1. The FTS rank entanglement classes; 8.1.1. Rank 1 and the class of separable states; 8.1.2. Rank 2 and the class of biseparable states; 8.1.3. Rank 3 and the class of W-states; 8.1.4. Rank 4 and the class of GHZ-states; 8.2. SLOCC orbits; 9. Supersymmetric quantum information; 10. Supergroups; 10.1. Grassmann numbers 10.2. Super linear algebra10.3. Orthosymplectic superalgebras; 11. Super Hilbert space and uOSp(1 2); 11.0.1. Physical states; 11.1. The superqubit; 12. Super entanglement; 12.1. Two superqubits; 12.2. Three superqubits; Acknowledgments; References; Weak Value with Decoherence A. Hosoya; 1. Introduction; 2. Weak Value; 3. Weak Measurement with Decoherence; 3.1. Weak Measurement-Review; 3.2. Weak Measurement and Environment; 4. Geometric Phase; 5. Summary; Bibliography; Lectures on Matrix Product Representation of States V. Karimipour and M. Asoudeh; 1. Introduction Part I: Matrix Product States in Quantum Spin Chains |
| Record Nr. | UNINA-9910971329903321 |
| Melville N.Y., : American Institute of Physics, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
| Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka |
| Pubbl/distr/stampa | Singapore, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (278 p.) |
| Disciplina | 530.12 |
| Altri autori (Persone) |
NakaharaMikio
TanakaShu |
| Collana | Kinki University Series on Quantum Computing |
| Soggetto topico |
Quantum computers
Quantum theory Information theory |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-73945-3
981-4425-28-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Symposium; Preface; List of Participants; Organizing Committee; CONTENTS; Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu; 1. Introduction; 2. Formulation; 2.1. Bose-Hubbard model; 2.2. Frustrated XY model; 2.3. Hamiltonian for hard-core bosons in an effective magnetic field; 2.3.1. CP1 variable and path-integral representation; 3. Ground state; 4. Phase structures at finite T; 4.1. Density fluctuation; 4.2. The finite temperature phase transition; 4.2.1. f=0; 4.2.2. f=1/2; 4.2.3. f=2/5; 5. Summary; Acknowledgments
Appendix A. Reduction to the Josephson junction regimeAppendix A.1. Determination of Jij; Appendix A.2. Estimation of the parameters; Appendix B. Relation between the CP1 model and the other models; Appendix C. Symmetry of the gauged CP1 model; References; Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto; 1. Introduction; 2. Quantum Simulation of the Hubbard Model; 3. Exciton-Polaritons; 4. Quantum Simulation with Exciton-Polaritons 4.1. Excited state condensation in one dimensional periodic lattice potentials4.2. Mott transition of EPs and indirect excitons in a periodic potential; 5. Accelerated Optimization Problem Search Using BECs; 5.1. The bosonic Ising model; 5.2. Performance of the bosonic Ising model; 6. Summary and Conclusions; Acknowledgments; References; Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi; 1. Introduction; 1.1. Quantum simulation of Hubbard model; 1.2. Why quantum simulation?; 1.3. Extending the system; 2. An approach using ytterbum 3. Production of quantum degenerate Yb atoms4. Superfluid-Mott insulator transition; 5. Strongly-correlated phases in Bose-Fermi mixtures; 5.1. Hamiltonian of the system; 5.2. Repulsively interacting Bose-Fermi system; 5.3. Attractively interacting Bose-Fermi system; 5.4. Thermodynamics; 6. Prospect; Acknowledgement; References; Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai; 1. Introduction and summary; 2. XXX spin chain; 2.1. Baxter's T-Q equation; 2.2. More detail; 3. XXX Gaudin model 3.1. RHS of Fig. 33.2. LHS of Fig. 3; 3.2.1. Free-field representation; 4. Application and discussion; 4.1. Discussion; 4.2. XYZ Gaudin model; Acknowledgments; Appendix A; Definition of wn; References; Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato; 1. Introduction; 2. Spin-1/2 XXZ chain; 3. Algebraic Bethe ansatz; 4. Steps to calculate correlation functions; 5. Integrable higher spin XXZ chain; 6. Conclusion; Acknowledgments; Appendix A: Evaluation of (42); References; Classical Analogue of Weak Value in Stochastic Process H. Tomita 1. Introduction |
| Record Nr. | UNINA-9910464795803321 |
| Singapore, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
| Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka |
| Pubbl/distr/stampa | Singapore, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (278 p.) |
| Disciplina | 530.12 |
| Altri autori (Persone) |
NakaharaMikio
TanakaShu |
| Collana | Kinki University Series on Quantum Computing |
| Soggetto topico |
Quantum computers
Quantum theory Information theory |
| ISBN |
1-283-73945-3
981-4425-28-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Symposium; Preface; List of Participants; Organizing Committee; CONTENTS; Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu; 1. Introduction; 2. Formulation; 2.1. Bose-Hubbard model; 2.2. Frustrated XY model; 2.3. Hamiltonian for hard-core bosons in an effective magnetic field; 2.3.1. CP1 variable and path-integral representation; 3. Ground state; 4. Phase structures at finite T; 4.1. Density fluctuation; 4.2. The finite temperature phase transition; 4.2.1. f=0; 4.2.2. f=1/2; 4.2.3. f=2/5; 5. Summary; Acknowledgments
Appendix A. Reduction to the Josephson junction regimeAppendix A.1. Determination of Jij; Appendix A.2. Estimation of the parameters; Appendix B. Relation between the CP1 model and the other models; Appendix C. Symmetry of the gauged CP1 model; References; Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto; 1. Introduction; 2. Quantum Simulation of the Hubbard Model; 3. Exciton-Polaritons; 4. Quantum Simulation with Exciton-Polaritons 4.1. Excited state condensation in one dimensional periodic lattice potentials4.2. Mott transition of EPs and indirect excitons in a periodic potential; 5. Accelerated Optimization Problem Search Using BECs; 5.1. The bosonic Ising model; 5.2. Performance of the bosonic Ising model; 6. Summary and Conclusions; Acknowledgments; References; Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi; 1. Introduction; 1.1. Quantum simulation of Hubbard model; 1.2. Why quantum simulation?; 1.3. Extending the system; 2. An approach using ytterbum 3. Production of quantum degenerate Yb atoms4. Superfluid-Mott insulator transition; 5. Strongly-correlated phases in Bose-Fermi mixtures; 5.1. Hamiltonian of the system; 5.2. Repulsively interacting Bose-Fermi system; 5.3. Attractively interacting Bose-Fermi system; 5.4. Thermodynamics; 6. Prospect; Acknowledgement; References; Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai; 1. Introduction and summary; 2. XXX spin chain; 2.1. Baxter's T-Q equation; 2.2. More detail; 3. XXX Gaudin model 3.1. RHS of Fig. 33.2. LHS of Fig. 3; 3.2.1. Free-field representation; 4. Application and discussion; 4.1. Discussion; 4.2. XYZ Gaudin model; Acknowledgments; Appendix A; Definition of wn; References; Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato; 1. Introduction; 2. Spin-1/2 XXZ chain; 3. Algebraic Bethe ansatz; 4. Steps to calculate correlation functions; 5. Integrable higher spin XXZ chain; 6. Conclusion; Acknowledgments; Appendix A: Evaluation of (42); References; Classical Analogue of Weak Value in Stochastic Process H. Tomita 1. Introduction |
| Record Nr. | UNINA-9910789341903321 |
| Singapore, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
| Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013 |
| Descrizione fisica | 1 online resource (199 p.) |
| Disciplina |
004.1
530.12 |
| Altri autori (Persone) |
NakaharaMikio
TanakaShu |
| Collana | Kinki University series on quantum computing |
| Soggetto topico |
Statistical physics
Thermodynamics |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4425-19-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; CONTENTS; Quantum Annealing: From Viewpoints of Statistical Physics, Condensed Matter Physics, and Computational Physics Shu Tanaka and Ryo Tamura; 1. Introduction; 2. Ising Model; 2.1. Magnetic Systems; 2.2. Nuclear Magnetic Resonance; 3. Implementation Methods of Quantum Annealing; 3.1. Monte Carlo Method; 3.2. Deterministic Method Based on Mean-Field Approximation; 3.3. Real-Time Dynamics; 3.4. Experiments; 4. Optimization Problems; 4.1. Traveling Salesman Problem; 4.1.1. Monte Carlo Method; 4.1.2. Quantum Annealing; 4.1.3. Comparison with Simulated Annealing and Quantum Annealing
4.2. Clustering Problem 5. Relationship between Quantum Annealing and Statistical Physics; 5.1. Kibble-Zurek Mechanism; 5.1.1. Efficiency of Simulated Annealing and Quantum Annealing; 5.1.2. Simulated Annealing for Random Ferromagnetic Ising Chain; 5.1.3. Quantum Annealing for Random Ferromagnetic Ising Chain; 5.1.4. Comparison between Simulated and Quantum Annealing Methods; 5.2. Frustration Effects for Simulated Annealing and Quantum Annealing; 5.2.1. Thermal Fluctuation and Quantum Fluctuation Effect of Geometrical Frustrated Systems 5.2.2. Non-Monotonic Behavior of Correlation Function in Decorated Bond System 6. Conclusion; Acknowledgement; References; Spin Glass: A Bridge between Quantum Computation and Statistical Mechanics Masayuki Ohzeki; 1. Introduction: Statistical Mechanics and Quantum Mechanics; 2. Training: Statistical Mechanics; 2.1. Student's misreading point: Probability is...; 2.2. Probability describes... a certain behavior; 2.3. Large deviation property; 2.4. Mean-field analysis; 2.5. Phase transition; 2.6. Spin glasses; 2.7. Gauge theory; 3. Quantum Error Correction: Surface Code; 3.1. Error model 3.2. Surface code 3.2.1. Check operators and error syndrome; 3.2.2. Probability of error chains; 3.3. Analyses on accuracy thresholds for surface code; 3.3.1. Duality analysis: Simple case; 3.3.2. Duality analysis: Spin glass; 3.3.3. Duality analysis with real-space renormalization; 3.3.4. Other cases; 3.3.5. Depolarizing channel; 4. Quantum Annealing and Beyond; 4.1. Quantum adiabatic computation: Short review; 4.2. Novel type of quantum annealing; 4.2.1. Classical quantum mapping; 4.2.2. Jarzynski equality; 4.2.3. Quantum Jarzynski annealing; 4.2.4. Problems in measurement of answer 4.3. Non-adiabatic quantum computation 4.3.1. Jarzynski equality for quantum system; 4.3.2. Performance of non-adiabatic quantum annealing; 4.4. Analyses on non-adiabatic quantum annealing; 4.4.1. Gauge transformation for quantum spin systems; 4.4.2. Relationship between two different paths of NQA; 4.4.3. Exact relations involving inverse statistics; 5. Summary; References; Second Law-like Inequalities with Quantum Relative Entropy: An Introduction Takahiro Sagawa; 1. Introduction; 2. Quantum States and Dynamics; 2.1. Quantum States and Observables; 2.2. Quantum Dynamics 2.2.1. Unitary Evolution |
| Record Nr. | UNINA-9910464794703321 |
| Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
| Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013 |
| Descrizione fisica | 1 online resource (199 p.) |
| Disciplina |
004.1
530.12 |
| Altri autori (Persone) |
NakaharaMikio
TanakaShu |
| Collana | Kinki University series on quantum computing |
| Soggetto topico |
Statistical physics
Thermodynamics |
| ISBN | 981-4425-19-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; CONTENTS; Quantum Annealing: From Viewpoints of Statistical Physics, Condensed Matter Physics, and Computational Physics Shu Tanaka and Ryo Tamura; 1. Introduction; 2. Ising Model; 2.1. Magnetic Systems; 2.2. Nuclear Magnetic Resonance; 3. Implementation Methods of Quantum Annealing; 3.1. Monte Carlo Method; 3.2. Deterministic Method Based on Mean-Field Approximation; 3.3. Real-Time Dynamics; 3.4. Experiments; 4. Optimization Problems; 4.1. Traveling Salesman Problem; 4.1.1. Monte Carlo Method; 4.1.2. Quantum Annealing; 4.1.3. Comparison with Simulated Annealing and Quantum Annealing
4.2. Clustering Problem 5. Relationship between Quantum Annealing and Statistical Physics; 5.1. Kibble-Zurek Mechanism; 5.1.1. Efficiency of Simulated Annealing and Quantum Annealing; 5.1.2. Simulated Annealing for Random Ferromagnetic Ising Chain; 5.1.3. Quantum Annealing for Random Ferromagnetic Ising Chain; 5.1.4. Comparison between Simulated and Quantum Annealing Methods; 5.2. Frustration Effects for Simulated Annealing and Quantum Annealing; 5.2.1. Thermal Fluctuation and Quantum Fluctuation Effect of Geometrical Frustrated Systems 5.2.2. Non-Monotonic Behavior of Correlation Function in Decorated Bond System 6. Conclusion; Acknowledgement; References; Spin Glass: A Bridge between Quantum Computation and Statistical Mechanics Masayuki Ohzeki; 1. Introduction: Statistical Mechanics and Quantum Mechanics; 2. Training: Statistical Mechanics; 2.1. Student's misreading point: Probability is...; 2.2. Probability describes... a certain behavior; 2.3. Large deviation property; 2.4. Mean-field analysis; 2.5. Phase transition; 2.6. Spin glasses; 2.7. Gauge theory; 3. Quantum Error Correction: Surface Code; 3.1. Error model 3.2. Surface code 3.2.1. Check operators and error syndrome; 3.2.2. Probability of error chains; 3.3. Analyses on accuracy thresholds for surface code; 3.3.1. Duality analysis: Simple case; 3.3.2. Duality analysis: Spin glass; 3.3.3. Duality analysis with real-space renormalization; 3.3.4. Other cases; 3.3.5. Depolarizing channel; 4. Quantum Annealing and Beyond; 4.1. Quantum adiabatic computation: Short review; 4.2. Novel type of quantum annealing; 4.2.1. Classical quantum mapping; 4.2.2. Jarzynski equality; 4.2.3. Quantum Jarzynski annealing; 4.2.4. Problems in measurement of answer 4.3. Non-adiabatic quantum computation 4.3.1. Jarzynski equality for quantum system; 4.3.2. Performance of non-adiabatic quantum annealing; 4.4. Analyses on non-adiabatic quantum annealing; 4.4.1. Gauge transformation for quantum spin systems; 4.4.2. Relationship between two different paths of NQA; 4.4.3. Exact relations involving inverse statistics; 5. Summary; References; Second Law-like Inequalities with Quantum Relative Entropy: An Introduction Takahiro Sagawa; 1. Introduction; 2. Quantum States and Dynamics; 2.1. Quantum States and Observables; 2.2. Quantum Dynamics 2.2.1. Unitary Evolution |
| Record Nr. | UNINA-9910789342103321 |
| Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical aspects of quantum computing 2007 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
| Mathematical aspects of quantum computing 2007 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (240 p.) |
| Disciplina |
004.0151
004.1 |
| Altri autori (Persone) |
NakaharaMikio
RahimiRobabeh SaiTohAkira |
| Collana | Kinki University series on quantum computing |
| Soggetto topico |
Quantum computers
Quantum computers - Mathematics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-96813-7
9786611968137 981-281-448-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Preface; LIST OF PARTICIPANTS; Quantum Computing: An Overview M. Nakahara; 1. Introduction; 2. Quantum Physics; 2.1. Notation and conventions; 2.2. Axioms of quantum mechanics; 2.3. Simple example; 2.4. Multipartite system, tensor product and entangled state; 2.5. Mixed states and density matrices; 2.6. Negativity; 2.7. Partial trace and purification; 3. Qubits; 3.1. One qubit; 3.2. Bloch sphere; 3.3. Multi-qubit systems and entangled states; 4. Quantum Gates, Quantum Circuit and Quantum Computation; 4.1. Introduction; 4.2. Quantum gates; 4.2.1. Simple quantum gates
4.2.2. Walsh-Hadamard transformation 4.2.3. SWAP gate and Fredkin gate; 4.3. No-cloning theorem; 4.4. Quantum teleportation; 4.5. Universal quantum gates; 4.6. Quantum parallelism and entanglement; 5. Simple Quantum Algorithms; 5.1. Deutsch algorithm; 5.2. Deutsch-Jozsa algorithm; 6. Decoherence; 6.1. Open quantum system; 6.1.1. Quantum operations and Kraus operators; 6.1.2. Operator-sum representation and noisy quantum channel; 6.1.3. Completely positive maps; 6.2. Measurements as quantum operations; 6.2.1. Projective measurements; 6.2.2. POVM; 6.3. Examples; 6.3.1. Bit- flip channel 6.3.2. Phase-flip channel 7. Quantum Error Correcting Codes; 7.1. Introduction; 7.2. Three-qubit bit-flip code: the simplest example; 7.2.1. Bit-flip QECC; 7.2.2. Encoding; 7.2.3. Transmission; 7.2.4. Error syndrome dectection and correction; 7.2.5. Decoding; 7.2.6. Miracle of entanglement; 7.2.7. Continuous rotations; 8. DiVincenzo Criteria; 8.1. DiVincenzo criteria; 8.2. Physical realizations; Acknowledgements; References; Braid Group and Topological Quantum Computing T. Ootsuka, K. Sakuma; 1. Introduction; 2. Braid Groups; 3. Knots Defined by Braids; 4. Topological Quantum Computing 5. Anyon Model6. Fibonacci Anyons; Appendix A. Fundamental group; References; An Introduction to Entanglement Theory D. J. H. Markham; 1. Introduction; 2. Quantum Mechanics and State Space; 2.1. State space; 2.2. Evolution; 2.3. POVMs, projective measurement and observables; 2.4. Composite systems; 3. Entanglement and Separability; 4. Quantification of Entanglement; 4.1. Local operations and classical communication; 4.2. Entanglement measures; 4.3. Uniqueness of measures, order on states; 4.4. Measuring entanglement; 4.5. Multipartite entanglement; 5. Conclusions; References Holonomic Quantum Computing and Its Optimization S. Tanimura1. Introduction; 2. Holonomies in Mathematics and Physics; 2.1. Holonomy in Riemannian geometry; 2.2. Berry phase in quantum mechanics; 2.3. Wilczek-Zee holonomy in quantum mechanics; 2.4. Examples; 2.4.1. Berry phase; 2.4.2. Λ-type system; 3. Holonomic Quantum Computer; 4. Formulation of the Problem and its Solution; 4.1. Geometrical setting; 4.2. The isoholonomic problem; 4.3. The solution: horizontal extremal curve; 5. The Boundary-Value Problem; 5.1. Equivalence class; 5.2. U(1) holonomy; 5.3. U(k) holonomy 6. Examples of Unitary Gates |
| Record Nr. | UNINA-9910453195003321 |
| Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||