top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2010
Descrizione fisica 1 online resource (202 p.)
Disciplina 004.1
Altri autori (Persone) NakaharaMikio
RahimiRobabeh
SaiTohAkira
Collana Kinki University series on quantum computing
Soggetto topico Quantum computers
Soggetto genere / forma Electronic books.
ISBN 1-282-76355-5
9786612763557
981-4295-84-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Elementary mathematical framework for open quantum d-level systems : decoherence overview / G. Kimura -- Quantum error correction and fault-tolerant quantum computing / F. Gaitan and R. Li -- Composite pulses as geometric quantum gates / Y. Ota and Y. Kondo -- Quantum wipe effect / A. SaiToh, R. Rahimi, M. Nakahara -- Holonomic quantum gates using isospectral deformation of Ising model / M. Bando ... [et al.].
Record Nr. UNINA-9910455564403321
Hackensack, N.J., : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Decoherence suppression in quantum systems 2008 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2010
Descrizione fisica 1 online resource (202 p.)
Disciplina 004.1
Altri autori (Persone) NakaharaMikio
RahimiRobabeh
SaiTohAkira
Collana Kinki University series on quantum computing
Soggetto topico Quantum computers
ISBN 1-282-76355-5
9786612763557
981-4295-84-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Elementary mathematical framework for open quantum d-level systems : decoherence overview / G. Kimura -- Quantum error correction and fault-tolerant quantum computing / F. Gaitan and R. Li -- Composite pulses as geometric quantum gates / Y. Ota and Y. Kondo -- Quantum wipe effect / A. SaiToh, R. Rahimi, M. Nakahara -- Holonomic quantum gates using isospectral deformation of Ising model / M. Bando ... [et al.].
Record Nr. UNINA-9910780893903321
Hackensack, N.J., : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 530.143
Altri autori (Persone) NakaharaMikio
WanYidun
SasakiYoshitaka
Collana Kinki University series on quantum computing
Soggetto topico Quantum computers
Soggetto genere / forma Electronic books.
ISBN 981-4425-98-2
1-299-13324-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Programme; List of Participants; CONTENTS; Matrix Techniques in Quantum Information Science C.-K. Li; 1. Quantum Operations, Completely Positive Linear Maps; 1.1. Open quantum systems; 1.2. Completely positive linear maps; 1.3. Interpolating problems; 1.4. Completely positive maps on a single matrix; 2. Quantum Error Correction, Higher Rank Numerical Ranges; 2.1. Algebraic approach to quantum error correction; 2.2. Operator approach to quantum error correction; 2.3. Higher rank numerical ranges and basic properties; 2.4. Results on the joint higher rank numerical range
AcknowledgmentReferences; Untying Knots by NMR: Experimental Implementation of an Exponentially Fast Quantum Algorithm for Approximating the Jones Polynomial R. Marx; 1. Mathematical Description of NMR Spectroscopy; 1.1. From the wave function to the product operator formalism; 1.2. Product operator formalism; 1.2.1. Description of spin states; 1.2.2. Description of dynamics; 1.2.3. Description of measurements; 1.3. Density operator formalism; 1.3.1. Description of spin states; 1.3.2. Description of dynamics; 1.3.3. Description of measurements; 1.4. For further reading
2. NMR Quantum Computing Using Pseudopure States2.1. DiVincenzo criteria; 2.1.1. Qubits of an NMR-QC (ensemble of ) spin-1/2-nuclei; 2.1.2. Initialization of an NMR-QC pseudopure state; 2.1.3. Quantum gates: realization in an NMR-QC sequence of r.f. pulses; 2.1.4. Measurement of an NMR-QC expectation value; 2.1.5. Coherence time of an NMR-QC T2 (or longer?); 2.2. Deutsch-Jozsa quantum algorithm on a 2-qubit NMR-QC (PPS); 2.2.1. Alice: initialization; 2.2.2. Bob: function evaluation (1-bit functions); 2.2.3. Alice: measurement
2.3. Chemical Engineering of a 5-qubit NMR quantum computer2.3.1. Design of a suitable compound ("molecule"); 2.3.2. Synthesis of the chosen compound; 2.3.3. Coupling topology of the chosen molecule; 2.4. Deutsch-Jozsa quantum algorithm on a 5-qubit NMR-QC (PPS); 2.4.1. Alice: initialization; 2.4.2. Bob: function evaluation (4-bit functions); 2.4.3. Alice: measurement; 2.5. For further reading; 3. NMR Quantum Computing Using The Thermal State; 3.1. Basic principles of thermal state NMR quantum computing; 3.1.1. Step 1: go from a unitary to the controlled unitary
3.1.2. Step 2: apply cU on excited thermal state of control spin3.1.3. Step 3: measure I1x and I1y; 3.2. Pseudopure state vs. thermal state (pros and cons); 3.3. Deutsch-Jozsa quantum algorithm on a 2-qubit thermal state NMR-QC; 3.3.1. Alice: initialization; 3.3.2. Bob: function evaluation (1-bit functions); 3.3.3. Alice: measurement; 3.4. Deutsch-Jozsa quantum algorithm on a 4-qubit thermal state NMR-QC; 3.4.1. Alice: initialization; 3.4.2. Bob: function evaluation (3-bit functions); 3.4.3. Alice: measurement; 3.5. For further reading; 4. "Untying Knots by NMR"; 4.1. Knot theory
4.1.1. Definition of knots and links
Record Nr. UNINA-9910452738803321
Hackensack, N.J., : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
Diversities in quantum computation and quantum information [[electronic resource] /] / editors, Mikio Nakahara, Yidun Wan, Yoshitaka Sasaki
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 530.143
Altri autori (Persone) NakaharaMikio
WanYidun
SasakiYoshitaka
Collana Kinki University series on quantum computing
Soggetto topico Quantum computers
ISBN 981-4425-98-2
1-299-13324-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Programme; List of Participants; CONTENTS; Matrix Techniques in Quantum Information Science C.-K. Li; 1. Quantum Operations, Completely Positive Linear Maps; 1.1. Open quantum systems; 1.2. Completely positive linear maps; 1.3. Interpolating problems; 1.4. Completely positive maps on a single matrix; 2. Quantum Error Correction, Higher Rank Numerical Ranges; 2.1. Algebraic approach to quantum error correction; 2.2. Operator approach to quantum error correction; 2.3. Higher rank numerical ranges and basic properties; 2.4. Results on the joint higher rank numerical range
AcknowledgmentReferences; Untying Knots by NMR: Experimental Implementation of an Exponentially Fast Quantum Algorithm for Approximating the Jones Polynomial R. Marx; 1. Mathematical Description of NMR Spectroscopy; 1.1. From the wave function to the product operator formalism; 1.2. Product operator formalism; 1.2.1. Description of spin states; 1.2.2. Description of dynamics; 1.2.3. Description of measurements; 1.3. Density operator formalism; 1.3.1. Description of spin states; 1.3.2. Description of dynamics; 1.3.3. Description of measurements; 1.4. For further reading
2. NMR Quantum Computing Using Pseudopure States2.1. DiVincenzo criteria; 2.1.1. Qubits of an NMR-QC (ensemble of ) spin-1/2-nuclei; 2.1.2. Initialization of an NMR-QC pseudopure state; 2.1.3. Quantum gates: realization in an NMR-QC sequence of r.f. pulses; 2.1.4. Measurement of an NMR-QC expectation value; 2.1.5. Coherence time of an NMR-QC T2 (or longer?); 2.2. Deutsch-Jozsa quantum algorithm on a 2-qubit NMR-QC (PPS); 2.2.1. Alice: initialization; 2.2.2. Bob: function evaluation (1-bit functions); 2.2.3. Alice: measurement
2.3. Chemical Engineering of a 5-qubit NMR quantum computer2.3.1. Design of a suitable compound ("molecule"); 2.3.2. Synthesis of the chosen compound; 2.3.3. Coupling topology of the chosen molecule; 2.4. Deutsch-Jozsa quantum algorithm on a 5-qubit NMR-QC (PPS); 2.4.1. Alice: initialization; 2.4.2. Bob: function evaluation (4-bit functions); 2.4.3. Alice: measurement; 2.5. For further reading; 3. NMR Quantum Computing Using The Thermal State; 3.1. Basic principles of thermal state NMR quantum computing; 3.1.1. Step 1: go from a unitary to the controlled unitary
3.1.2. Step 2: apply cU on excited thermal state of control spin3.1.3. Step 3: measure I1x and I1y; 3.2. Pseudopure state vs. thermal state (pros and cons); 3.3. Deutsch-Jozsa quantum algorithm on a 2-qubit thermal state NMR-QC; 3.3.1. Alice: initialization; 3.3.2. Bob: function evaluation (1-bit functions); 3.3.3. Alice: measurement; 3.4. Deutsch-Jozsa quantum algorithm on a 4-qubit thermal state NMR-QC; 3.4.1. Alice: initialization; 3.4.2. Bob: function evaluation (3-bit functions); 3.4.3. Alice: measurement; 3.5. For further reading; 4. "Untying Knots by NMR"; 4.1. Knot theory
4.1.1. Definition of knots and links
Record Nr. UNINA-9910779580903321
Hackensack, N.J., : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers in quantum information research : decoherence, entanglement, entropy, MPS and DMRG / / editors, Miklo Nakahara, Shu Tanaka
Frontiers in quantum information research : decoherence, entanglement, entropy, MPS and DMRG / / editors, Miklo Nakahara, Shu Tanaka
Edizione [1st ed.]
Pubbl/distr/stampa Melville N.Y., : American Institute of Physics, 2012
Descrizione fisica 1 online resource (359 p.)
Disciplina 004.1
Altri autori (Persone) NakaharaMikio
TanakaShu
Collana Kinki University series on quantum computing
Soggetto topico Quantum electronics
Information display systems
ISBN 9786613906236
9781283593786
1283593785
9789814407199
9814407194
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Summer School on Decoherence, Entanglement and Entropy Oxford Kobe Institute (Kobe, Japan); Preface; Workshop on Matrix Product State Formulation and Density Matrix Renormalization Group Simulations (MPS&DMRG) Oxford Kobe Institute (Kobe, Japan); List of Participants; Committees; CONTENTS; Part A Summer School on Decoherence, Entanglement and Entropy; Black Holes and Qubits L. Borsten, M. J. Du., and W. Rubens; Overview; 1. Qubits and entanglement; 1.1. A brief introduction to quantum information; 1.1.1. Qubits; 1.2. Entanglement and the Bell inequality
1.2.1. Entanglement dependent quantum information1.3. Entanglement classification; 1.3.1. Bell inequalities without the inequality; 1.3.2. The SLOCC paradigm; 1.3.3. Entanglement measures; 1.3.4. Stochastic LOCC equivalence; 1.4. Bipartite entanglement; 1.4.1. Generic finite-dimensional bipartite systems; 1.4.2. Two qubits; 1.5. Three qubit entanglement; 1.5.1. Local unitary invariants; 1.5.2. Cayley's hyperdeterminant; 1.5.3. Entanglement classification; 2. Black holes in M-theory; 2.1. The road to M-theory; 2.2. Black holes; 2.2.1. Extremal black holes; 2.3. Black hole thermodynamics
2.4. Black holes in supergravity2.5. The STU model; 2.5.1. The Lagrangian; 2.5.2. The Bogomol'nyi spectrum; 2.5.3. Black hole entropy; 3. STU black holes and three qubits; 3.1. Entropy/entanglement correspondence; 3.2. Rebits; 3.3. Classification of N = 2 black holes and three-qubit states; 3.4. Further developments; 3.4.1. Microscopic interpretation; 3.4.2. 4-qubit entanglement and the STU model in D = 3; 4. Beyond the STU model; 4.1. N = 8 supergravity and black holes; 5. E7 and the tripartite entanglement of seven qubits; 6. Fano plane entanglement and the octonions
6.1. Composition algebras6.2. The octonionic tripartite entanglement of seven qubits; 6.3. Subsectors; 7. Cubic Jordan algebras and the Freudenthal triple system; 7.1. Cubic Jordan algebras; 7.2. The Freudenthal triple system; 8. The 3-qubit Freudenthal triple system; 8.1. The FTS rank entanglement classes; 8.1.1. Rank 1 and the class of separable states; 8.1.2. Rank 2 and the class of biseparable states; 8.1.3. Rank 3 and the class of W-states; 8.1.4. Rank 4 and the class of GHZ-states; 8.2. SLOCC orbits; 9. Supersymmetric quantum information; 10. Supergroups; 10.1. Grassmann numbers
10.2. Super linear algebra10.3. Orthosymplectic superalgebras; 11. Super Hilbert space and uOSp(1 2); 11.0.1. Physical states; 11.1. The superqubit; 12. Super entanglement; 12.1. Two superqubits; 12.2. Three superqubits; Acknowledgments; References; Weak Value with Decoherence A. Hosoya; 1. Introduction; 2. Weak Value; 3. Weak Measurement with Decoherence; 3.1. Weak Measurement-Review; 3.2. Weak Measurement and Environment; 4. Geometric Phase; 5. Summary; Bibliography; Lectures on Matrix Product Representation of States V. Karimipour and M. Asoudeh; 1. Introduction
Part I: Matrix Product States in Quantum Spin Chains
Record Nr. UNINA-9910971329903321
Melville N.Y., : American Institute of Physics, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Pubbl/distr/stampa Singapore, : World Scientific, c2013
Descrizione fisica 1 online resource (278 p.)
Disciplina 530.12
Altri autori (Persone) NakaharaMikio
TanakaShu
Collana Kinki University Series on Quantum Computing
Soggetto topico Quantum computers
Quantum theory
Information theory
Soggetto genere / forma Electronic books.
ISBN 1-283-73945-3
981-4425-28-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Symposium; Preface; List of Participants; Organizing Committee; CONTENTS; Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu; 1. Introduction; 2. Formulation; 2.1. Bose-Hubbard model; 2.2. Frustrated XY model; 2.3. Hamiltonian for hard-core bosons in an effective magnetic field; 2.3.1. CP1 variable and path-integral representation; 3. Ground state; 4. Phase structures at finite T; 4.1. Density fluctuation; 4.2. The finite temperature phase transition; 4.2.1. f=0; 4.2.2. f=1/2; 4.2.3. f=2/5; 5. Summary; Acknowledgments
Appendix A. Reduction to the Josephson junction regimeAppendix A.1. Determination of Jij; Appendix A.2. Estimation of the parameters; Appendix B. Relation between the CP1 model and the other models; Appendix C. Symmetry of the gauged CP1 model; References; Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto; 1. Introduction; 2. Quantum Simulation of the Hubbard Model; 3. Exciton-Polaritons; 4. Quantum Simulation with Exciton-Polaritons
4.1. Excited state condensation in one dimensional periodic lattice potentials4.2. Mott transition of EPs and indirect excitons in a periodic potential; 5. Accelerated Optimization Problem Search Using BECs; 5.1. The bosonic Ising model; 5.2. Performance of the bosonic Ising model; 6. Summary and Conclusions; Acknowledgments; References; Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi; 1. Introduction; 1.1. Quantum simulation of Hubbard model; 1.2. Why quantum simulation?; 1.3. Extending the system; 2. An approach using ytterbum
3. Production of quantum degenerate Yb atoms4. Superfluid-Mott insulator transition; 5. Strongly-correlated phases in Bose-Fermi mixtures; 5.1. Hamiltonian of the system; 5.2. Repulsively interacting Bose-Fermi system; 5.3. Attractively interacting Bose-Fermi system; 5.4. Thermodynamics; 6. Prospect; Acknowledgement; References; Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai; 1. Introduction and summary; 2. XXX spin chain; 2.1. Baxter's T-Q equation; 2.2. More detail; 3. XXX Gaudin model
3.1. RHS of Fig. 33.2. LHS of Fig. 3; 3.2.1. Free-field representation; 4. Application and discussion; 4.1. Discussion; 4.2. XYZ Gaudin model; Acknowledgments; Appendix A; Definition of wn; References; Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato; 1. Introduction; 2. Spin-1/2 XXZ chain; 3. Algebraic Bethe ansatz; 4. Steps to calculate correlation functions; 5. Integrable higher spin XXZ chain; 6. Conclusion; Acknowledgments; Appendix A: Evaluation of (42); References; Classical Analogue of Weak Value in Stochastic Process H. Tomita
1. Introduction
Record Nr. UNINA-9910464795803321
Singapore, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Interface between quantum information and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Pubbl/distr/stampa Singapore, : World Scientific, c2013
Descrizione fisica 1 online resource (278 p.)
Disciplina 530.12
Altri autori (Persone) NakaharaMikio
TanakaShu
Collana Kinki University Series on Quantum Computing
Soggetto topico Quantum computers
Quantum theory
Information theory
ISBN 1-283-73945-3
981-4425-28-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Symposium; Preface; List of Participants; Organizing Committee; CONTENTS; Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu; 1. Introduction; 2. Formulation; 2.1. Bose-Hubbard model; 2.2. Frustrated XY model; 2.3. Hamiltonian for hard-core bosons in an effective magnetic field; 2.3.1. CP1 variable and path-integral representation; 3. Ground state; 4. Phase structures at finite T; 4.1. Density fluctuation; 4.2. The finite temperature phase transition; 4.2.1. f=0; 4.2.2. f=1/2; 4.2.3. f=2/5; 5. Summary; Acknowledgments
Appendix A. Reduction to the Josephson junction regimeAppendix A.1. Determination of Jij; Appendix A.2. Estimation of the parameters; Appendix B. Relation between the CP1 model and the other models; Appendix C. Symmetry of the gauged CP1 model; References; Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto; 1. Introduction; 2. Quantum Simulation of the Hubbard Model; 3. Exciton-Polaritons; 4. Quantum Simulation with Exciton-Polaritons
4.1. Excited state condensation in one dimensional periodic lattice potentials4.2. Mott transition of EPs and indirect excitons in a periodic potential; 5. Accelerated Optimization Problem Search Using BECs; 5.1. The bosonic Ising model; 5.2. Performance of the bosonic Ising model; 6. Summary and Conclusions; Acknowledgments; References; Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi; 1. Introduction; 1.1. Quantum simulation of Hubbard model; 1.2. Why quantum simulation?; 1.3. Extending the system; 2. An approach using ytterbum
3. Production of quantum degenerate Yb atoms4. Superfluid-Mott insulator transition; 5. Strongly-correlated phases in Bose-Fermi mixtures; 5.1. Hamiltonian of the system; 5.2. Repulsively interacting Bose-Fermi system; 5.3. Attractively interacting Bose-Fermi system; 5.4. Thermodynamics; 6. Prospect; Acknowledgement; References; Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai; 1. Introduction and summary; 2. XXX spin chain; 2.1. Baxter's T-Q equation; 2.2. More detail; 3. XXX Gaudin model
3.1. RHS of Fig. 33.2. LHS of Fig. 3; 3.2.1. Free-field representation; 4. Application and discussion; 4.1. Discussion; 4.2. XYZ Gaudin model; Acknowledgments; Appendix A; Definition of wn; References; Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato; 1. Introduction; 2. Spin-1/2 XXZ chain; 3. Algebraic Bethe ansatz; 4. Steps to calculate correlation functions; 5. Integrable higher spin XXZ chain; 6. Conclusion; Acknowledgments; Appendix A: Evaluation of (42); References; Classical Analogue of Weak Value in Stochastic Process H. Tomita
1. Introduction
Record Nr. UNINA-9910789341903321
Singapore, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013
Descrizione fisica 1 online resource (199 p.)
Disciplina 004.1
530.12
Altri autori (Persone) NakaharaMikio
TanakaShu
Collana Kinki University series on quantum computing
Soggetto topico Statistical physics
Thermodynamics
Soggetto genere / forma Electronic books.
ISBN 981-4425-19-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Quantum Annealing: From Viewpoints of Statistical Physics, Condensed Matter Physics, and Computational Physics Shu Tanaka and Ryo Tamura; 1. Introduction; 2. Ising Model; 2.1. Magnetic Systems; 2.2. Nuclear Magnetic Resonance; 3. Implementation Methods of Quantum Annealing; 3.1. Monte Carlo Method; 3.2. Deterministic Method Based on Mean-Field Approximation; 3.3. Real-Time Dynamics; 3.4. Experiments; 4. Optimization Problems; 4.1. Traveling Salesman Problem; 4.1.1. Monte Carlo Method; 4.1.2. Quantum Annealing; 4.1.3. Comparison with Simulated Annealing and Quantum Annealing
4.2. Clustering Problem 5. Relationship between Quantum Annealing and Statistical Physics; 5.1. Kibble-Zurek Mechanism; 5.1.1. Efficiency of Simulated Annealing and Quantum Annealing; 5.1.2. Simulated Annealing for Random Ferromagnetic Ising Chain; 5.1.3. Quantum Annealing for Random Ferromagnetic Ising Chain; 5.1.4. Comparison between Simulated and Quantum Annealing Methods; 5.2. Frustration Effects for Simulated Annealing and Quantum Annealing; 5.2.1. Thermal Fluctuation and Quantum Fluctuation Effect of Geometrical Frustrated Systems
5.2.2. Non-Monotonic Behavior of Correlation Function in Decorated Bond System 6. Conclusion; Acknowledgement; References; Spin Glass: A Bridge between Quantum Computation and Statistical Mechanics Masayuki Ohzeki; 1. Introduction: Statistical Mechanics and Quantum Mechanics; 2. Training: Statistical Mechanics; 2.1. Student's misreading point: Probability is...; 2.2. Probability describes... a certain behavior; 2.3. Large deviation property; 2.4. Mean-field analysis; 2.5. Phase transition; 2.6. Spin glasses; 2.7. Gauge theory; 3. Quantum Error Correction: Surface Code; 3.1. Error model
3.2. Surface code 3.2.1. Check operators and error syndrome; 3.2.2. Probability of error chains; 3.3. Analyses on accuracy thresholds for surface code; 3.3.1. Duality analysis: Simple case; 3.3.2. Duality analysis: Spin glass; 3.3.3. Duality analysis with real-space renormalization; 3.3.4. Other cases; 3.3.5. Depolarizing channel; 4. Quantum Annealing and Beyond; 4.1. Quantum adiabatic computation: Short review; 4.2. Novel type of quantum annealing; 4.2.1. Classical quantum mapping; 4.2.2. Jarzynski equality; 4.2.3. Quantum Jarzynski annealing; 4.2.4. Problems in measurement of answer
4.3. Non-adiabatic quantum computation 4.3.1. Jarzynski equality for quantum system; 4.3.2. Performance of non-adiabatic quantum annealing; 4.4. Analyses on non-adiabatic quantum annealing; 4.4.1. Gauge transformation for quantum spin systems; 4.4.2. Relationship between two different paths of NQA; 4.4.3. Exact relations involving inverse statistics; 5. Summary; References; Second Law-like Inequalities with Quantum Relative Entropy: An Introduction Takahiro Sagawa; 1. Introduction; 2. Quantum States and Dynamics; 2.1. Quantum States and Observables; 2.2. Quantum Dynamics
2.2.1. Unitary Evolution
Record Nr. UNINA-9910464794703321
Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Lectures on quantum computing, thermodynamics and statistical physics [[electronic resource] /] / editors, Mikio Nakahara, Shu Tanaka
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013
Descrizione fisica 1 online resource (199 p.)
Disciplina 004.1
530.12
Altri autori (Persone) NakaharaMikio
TanakaShu
Collana Kinki University series on quantum computing
Soggetto topico Statistical physics
Thermodynamics
ISBN 981-4425-19-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Quantum Annealing: From Viewpoints of Statistical Physics, Condensed Matter Physics, and Computational Physics Shu Tanaka and Ryo Tamura; 1. Introduction; 2. Ising Model; 2.1. Magnetic Systems; 2.2. Nuclear Magnetic Resonance; 3. Implementation Methods of Quantum Annealing; 3.1. Monte Carlo Method; 3.2. Deterministic Method Based on Mean-Field Approximation; 3.3. Real-Time Dynamics; 3.4. Experiments; 4. Optimization Problems; 4.1. Traveling Salesman Problem; 4.1.1. Monte Carlo Method; 4.1.2. Quantum Annealing; 4.1.3. Comparison with Simulated Annealing and Quantum Annealing
4.2. Clustering Problem 5. Relationship between Quantum Annealing and Statistical Physics; 5.1. Kibble-Zurek Mechanism; 5.1.1. Efficiency of Simulated Annealing and Quantum Annealing; 5.1.2. Simulated Annealing for Random Ferromagnetic Ising Chain; 5.1.3. Quantum Annealing for Random Ferromagnetic Ising Chain; 5.1.4. Comparison between Simulated and Quantum Annealing Methods; 5.2. Frustration Effects for Simulated Annealing and Quantum Annealing; 5.2.1. Thermal Fluctuation and Quantum Fluctuation Effect of Geometrical Frustrated Systems
5.2.2. Non-Monotonic Behavior of Correlation Function in Decorated Bond System 6. Conclusion; Acknowledgement; References; Spin Glass: A Bridge between Quantum Computation and Statistical Mechanics Masayuki Ohzeki; 1. Introduction: Statistical Mechanics and Quantum Mechanics; 2. Training: Statistical Mechanics; 2.1. Student's misreading point: Probability is...; 2.2. Probability describes... a certain behavior; 2.3. Large deviation property; 2.4. Mean-field analysis; 2.5. Phase transition; 2.6. Spin glasses; 2.7. Gauge theory; 3. Quantum Error Correction: Surface Code; 3.1. Error model
3.2. Surface code 3.2.1. Check operators and error syndrome; 3.2.2. Probability of error chains; 3.3. Analyses on accuracy thresholds for surface code; 3.3.1. Duality analysis: Simple case; 3.3.2. Duality analysis: Spin glass; 3.3.3. Duality analysis with real-space renormalization; 3.3.4. Other cases; 3.3.5. Depolarizing channel; 4. Quantum Annealing and Beyond; 4.1. Quantum adiabatic computation: Short review; 4.2. Novel type of quantum annealing; 4.2.1. Classical quantum mapping; 4.2.2. Jarzynski equality; 4.2.3. Quantum Jarzynski annealing; 4.2.4. Problems in measurement of answer
4.3. Non-adiabatic quantum computation 4.3.1. Jarzynski equality for quantum system; 4.3.2. Performance of non-adiabatic quantum annealing; 4.4. Analyses on non-adiabatic quantum annealing; 4.4.1. Gauge transformation for quantum spin systems; 4.4.2. Relationship between two different paths of NQA; 4.4.3. Exact relations involving inverse statistics; 5. Summary; References; Second Law-like Inequalities with Quantum Relative Entropy: An Introduction Takahiro Sagawa; 1. Introduction; 2. Quantum States and Dynamics; 2.1. Quantum States and Observables; 2.2. Quantum Dynamics
2.2.1. Unitary Evolution
Record Nr. UNINA-9910789342103321
Singapore ; ; Hackensack, NJ, : World Scientific Pub., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical aspects of quantum computing 2007 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Mathematical aspects of quantum computing 2007 [[electronic resource] /] / editors, Mikio Nakahara, Robabeh Rahimi, Akira SaiToh
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (240 p.)
Disciplina 004.0151
004.1
Altri autori (Persone) NakaharaMikio
RahimiRobabeh
SaiTohAkira
Collana Kinki University series on quantum computing
Soggetto topico Quantum computers
Quantum computers - Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-281-96813-7
9786611968137
981-281-448-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Preface; LIST OF PARTICIPANTS; Quantum Computing: An Overview M. Nakahara; 1. Introduction; 2. Quantum Physics; 2.1. Notation and conventions; 2.2. Axioms of quantum mechanics; 2.3. Simple example; 2.4. Multipartite system, tensor product and entangled state; 2.5. Mixed states and density matrices; 2.6. Negativity; 2.7. Partial trace and purification; 3. Qubits; 3.1. One qubit; 3.2. Bloch sphere; 3.3. Multi-qubit systems and entangled states; 4. Quantum Gates, Quantum Circuit and Quantum Computation; 4.1. Introduction; 4.2. Quantum gates; 4.2.1. Simple quantum gates
4.2.2. Walsh-Hadamard transformation 4.2.3. SWAP gate and Fredkin gate; 4.3. No-cloning theorem; 4.4. Quantum teleportation; 4.5. Universal quantum gates; 4.6. Quantum parallelism and entanglement; 5. Simple Quantum Algorithms; 5.1. Deutsch algorithm; 5.2. Deutsch-Jozsa algorithm; 6. Decoherence; 6.1. Open quantum system; 6.1.1. Quantum operations and Kraus operators; 6.1.2. Operator-sum representation and noisy quantum channel; 6.1.3. Completely positive maps; 6.2. Measurements as quantum operations; 6.2.1. Projective measurements; 6.2.2. POVM; 6.3. Examples; 6.3.1. Bit- flip channel
6.3.2. Phase-flip channel 7. Quantum Error Correcting Codes; 7.1. Introduction; 7.2. Three-qubit bit-flip code: the simplest example; 7.2.1. Bit-flip QECC; 7.2.2. Encoding; 7.2.3. Transmission; 7.2.4. Error syndrome dectection and correction; 7.2.5. Decoding; 7.2.6. Miracle of entanglement; 7.2.7. Continuous rotations; 8. DiVincenzo Criteria; 8.1. DiVincenzo criteria; 8.2. Physical realizations; Acknowledgements; References; Braid Group and Topological Quantum Computing T. Ootsuka, K. Sakuma; 1. Introduction; 2. Braid Groups; 3. Knots Defined by Braids; 4. Topological Quantum Computing
5. Anyon Model6. Fibonacci Anyons; Appendix A. Fundamental group; References; An Introduction to Entanglement Theory D. J. H. Markham; 1. Introduction; 2. Quantum Mechanics and State Space; 2.1. State space; 2.2. Evolution; 2.3. POVMs, projective measurement and observables; 2.4. Composite systems; 3. Entanglement and Separability; 4. Quantification of Entanglement; 4.1. Local operations and classical communication; 4.2. Entanglement measures; 4.3. Uniqueness of measures, order on states; 4.4. Measuring entanglement; 4.5. Multipartite entanglement; 5. Conclusions; References
Holonomic Quantum Computing and Its Optimization S. Tanimura1. Introduction; 2. Holonomies in Mathematics and Physics; 2.1. Holonomy in Riemannian geometry; 2.2. Berry phase in quantum mechanics; 2.3. Wilczek-Zee holonomy in quantum mechanics; 2.4. Examples; 2.4.1. Berry phase; 2.4.2. Λ-type system; 3. Holonomic Quantum Computer; 4. Formulation of the Problem and its Solution; 4.1. Geometrical setting; 4.2. The isoholonomic problem; 4.3. The solution: horizontal extremal curve; 5. The Boundary-Value Problem; 5.1. Equivalence class; 5.2. U(1) holonomy; 5.3. U(k) holonomy
6. Examples of Unitary Gates
Record Nr. UNINA-9910453195003321
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui