Functional Analytic Methods for Evolution Equations [[electronic resource] /] / by Giuseppe Da Prato, Peer Christian Kunstmann, Irena Lasiecka, Alessandra Lunardi, Roland Schnaubelt, Lutz Weis ; edited by Mimmo Iannelli, Rainer Nagel, Susanna Piazzera
| Functional Analytic Methods for Evolution Equations [[electronic resource] /] / by Giuseppe Da Prato, Peer Christian Kunstmann, Irena Lasiecka, Alessandra Lunardi, Roland Schnaubelt, Lutz Weis ; edited by Mimmo Iannelli, Rainer Nagel, Susanna Piazzera |
| Autore | Da Prato Giuseppe |
| Edizione | [1st ed. 2004.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 |
| Descrizione fisica | 1 online resource (CDLXXXIV, 474 p.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Differential equations
Partial differential equations Fourier analysis Operator theory Calculus of variations Probabilities Ordinary Differential Equations Partial Differential Equations Fourier Analysis Operator Theory Calculus of Variations and Optimal Control; Optimization Probability Theory and Stochastic Processes |
| ISBN | 3-540-44653-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Giuseppe Da Prato: An Introduction to Markov Semigroups -- Peer C. Kunstmann and Lutz Weis: Maximal$L_p§-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty $-functional Calculus -- Irena Lasiecka: Optimal Control Problems and Riccati Equations for Systems with Unbounded Controls and Partially Analytic Generators-Applications to Boundary and Point Control Problems -- Alessandra Lunardi: An Introduction to Parabolic Moving Boundary Problems -- Roland Schnaubelt: Asymptotic Behaviour of Parabolic Nonautonomous Evolution Equations. |
| Record Nr. | UNISA-996466496603316 |
Da Prato Giuseppe
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Functional Analytic Methods for Evolution Equations / / by Giuseppe Da Prato, Peer Christian Kunstmann, Irena Lasiecka, Alessandra Lunardi, Roland Schnaubelt, Lutz Weis ; edited by Mimmo Iannelli, Rainer Nagel, Susanna Piazzera
| Functional Analytic Methods for Evolution Equations / / by Giuseppe Da Prato, Peer Christian Kunstmann, Irena Lasiecka, Alessandra Lunardi, Roland Schnaubelt, Lutz Weis ; edited by Mimmo Iannelli, Rainer Nagel, Susanna Piazzera |
| Autore | Da Prato Giuseppe |
| Edizione | [1st ed. 2004.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 |
| Descrizione fisica | 1 online resource (CDLXXXIV, 474 p.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Differential equations
Differential equations, Partial Fourier analysis Operator theory Calculus of variations Probabilities Ordinary Differential Equations Partial Differential Equations Fourier Analysis Operator Theory Calculus of Variations and Optimal Control; Optimization Probability Theory and Stochastic Processes |
| ISBN | 3-540-44653-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Giuseppe Da Prato: An Introduction to Markov Semigroups -- Peer C. Kunstmann and Lutz Weis: Maximal$L_p§-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty $-functional Calculus -- Irena Lasiecka: Optimal Control Problems and Riccati Equations for Systems with Unbounded Controls and Partially Analytic Generators-Applications to Boundary and Point Control Problems -- Alessandra Lunardi: An Introduction to Parabolic Moving Boundary Problems -- Roland Schnaubelt: Asymptotic Behaviour of Parabolic Nonautonomous Evolution Equations. |
| Record Nr. | UNINA-9910144609003321 |
Da Prato Giuseppe
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Operator Theoretic Aspects of Ergodic Theory / / by Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel
| Operator Theoretic Aspects of Ergodic Theory / / by Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel |
| Autore | Eisner Tanja |
| Edizione | [1st ed. 2015.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Descrizione fisica | 1 online resource (XVIII, 628 p. 25 illus., 1 illus. in color.) |
| Disciplina | 515.42 |
| Collana | Graduate Texts in Mathematics |
| Soggetto topico |
Dynamics
Operator theory Functional analysis Dynamical Systems Operator Theory Functional Analysis |
| ISBN | 3-319-16898-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | What is Ergodic Theory? -- Topological Dynamical Systems -- Minimality and Recurrence -- The C*-algebra C(K) and the Koopman Operator -- Measure-Preserving Systems -- Recurrence and Ergodicity -- The Banach Lattice Lp and the Koopman Operator -- The Mean Ergodic Theorem -- Mixing Dynamical Systems -- Mean Ergodic Operators on C(K) -- The Pointwise Ergodic Theorem -- Isomorphisms and Topological Models -- Markov Operators -- Compact Semigroups and Groups -- Topological Dynamics Revisited -- The Jacobs–de Leeuw–Glicksberg Decomposition -- Dynamical Systems with Discrete Spectrum -- A Glimpse at Arithmetic Progressions -- Joinings -- The Host–Kra– Tao Theorem -- More Ergodic Theorems -- Appendix A: Topology -- Appendix B: Measure and Integration Theory -- Appendix C: Functional Analysis -- Appendix D: The Riesz Representation Theorem -- Appendix E: Theorems of Eberlein, Grothendieck, and Ellis. |
| Record Nr. | UNINA-9910300256403321 |
Eisner Tanja
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||