top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemical mechanical planarization of microelectronic materials [[electronic resource] /] / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Chemical mechanical planarization of microelectronic materials [[electronic resource] /] / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Autore Steigerwald Joseph M
Pubbl/distr/stampa Weinheim, : Wiley-VCH, 2004
Descrizione fisica 1 online resource (339 p.)
Disciplina 621.3815
621.38152
Altri autori (Persone) MurarkaS. P
GutmannRonald J
Soggetto topico Microelectronics - Materials
Grinding and polishing
ISBN 1-281-84314-8
9786611843144
3-527-61774-4
3-527-61775-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemical Mechanical Planarization of Microelectronic Materials; CONTENTS; Preface; 1 Chemical Mechanical Planarization - An Introduction; 1.1 Introduction; 1.2 Applications; 1.3 The CMP Process; 1.4 CMP Tools; 1.5 Process Integration; 1.6 Conclusion and Book Outline; References; 2 Historical Motivations for CMP; 2.1 Advanced Metallization Schemes; 2.1.1 Interconnect Delay Impact on Performance; 2.1.2 Methods of Reducing Interconnect Delay; 2.1.3 Planarity Requirements for Multilevel Metallization; 2.2 Planarization Schemes; 2.2.1 Smoothing and Local Planarization; 2.2.2 Global Planarization
2.3 CMP Planarization2.3.1 Advantages of CMP; 2.3.2 Disadvantages of CMP; 2.3.3 The Challenge of CMP; References; 3 CMP Variables and Manipulations; 3.1 Output Variables; 3.2 Input Variables; References; 4 Mechanical and Electrochemical Concepts for CMP; 4.1 Preston Equation; 4.2 Fluid Layer Interactions; 4.3 Boundary Layer Interactions; 4.3.1 Fluid Boundary Layer; 4.3.2 Double Layer; 4.3.3 Metal Surface Films; 4.3.4 Mechanical Abrasion; 4.4 Abrasion Modes; 4.4.1 Polishing vs. Grinding; 4.4.2 Hertzian Indentation vs. Fluid-Based Wear; 4.5 The Polishing Pad; 4.5.1 Pad Materials and Properties
4.5.2 Pad Conditioning4.6 Electrochemical Phenomena; 4.6.1 Reduction-Oxidation Reactions; 4.6.2 Pourbaix Diagrams; 4.6.3 Mixed Potential Theory; 4.6.4 Example: Copper CMP in NH3-Based Slurries; 4.6.5 Example: Copper-Titanium Interaction; 4.7 Role of Chemistry in CMP; 4.8 Abrasives; References; 5 Oxide CMP Processes - Mechanisms and Models; 5.1 The Role of Chemistry in Oxide Polishing; 5.1.1 Glass Polishing Mechanisms; 5.1.2 The Role of Water in Oxide Polishing; 5.1.3 Chemical Interactions Between Abrasive and Oxide Surface; 5.2 Oxide CMP in Practice; 5.2.1 Polish Rate Results
5.2.2 Planarization Results5.2.3 CMP in Manufacturing; 5.2.4 Yield Issues; 5.3 Summary; References; 6 Tungsten and CMP Processes; 6.1 Inlaid Metal Patterning; 6.1.1 RIE Etch Back; 6.1.2 Metal CMP; 6.2 Tungsten CMP; 6.2.1 Surface Passivation Model for Tungsten CMP; 6.2.2 Tungsten CMP Processes; 6.3 Summary; References; 7 Copper CMP; 7.1 Proposed Model for Copper CMP; 7.2 Surface Layer Formation - Planarization; 7.2.1 Formation of Native Surface Films; 7.2.2 Formation of Nonnative Cu-BTA Surface Film; 7.3 Material Dissolution; 7.3.1 Removal of Abraded Material
7.3.2 Increasing Solubility with Complexing Agent7.3.3 Increasing Dissolution Rate with Oxidizing Agents; 7.3.4 Chemical Aspect of the Copper CMP Model; 7.4 Preston Equation; 7.4.1 Preston Coefficient; 7.4.2 Polish Rates; 7.4.3 Comparison of Kp Values; 7.5 Polish-Induced Stress; 7.6 Pattern Geometry Effects; 7.6.1 Dishing and Erosion in Cu/SiO2 System; 7.6.2 Optimization of Process to Minimize Dishing and Erosion; 7.6.3 Summary; References; 8 CMP of Other Materials and New CMP Applications; 8.1 The Front-End Applications in Silicon IC Fabrication
8.1.1 Polysilicon CMP for Deep Trench Capacitor Fabrication
Record Nr. UNINA-9910144581703321
Steigerwald Joseph M  
Weinheim, : Wiley-VCH, 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemical mechanical planarization of microelectronic materials [[electronic resource] /] / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Chemical mechanical planarization of microelectronic materials [[electronic resource] /] / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Autore Steigerwald Joseph M
Pubbl/distr/stampa Weinheim, : Wiley-VCH, 2004
Descrizione fisica 1 online resource (339 p.)
Disciplina 621.3815
621.38152
Altri autori (Persone) MurarkaS. P
GutmannRonald J
Soggetto topico Microelectronics - Materials
Grinding and polishing
ISBN 1-281-84314-8
9786611843144
3-527-61774-4
3-527-61775-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemical Mechanical Planarization of Microelectronic Materials; CONTENTS; Preface; 1 Chemical Mechanical Planarization - An Introduction; 1.1 Introduction; 1.2 Applications; 1.3 The CMP Process; 1.4 CMP Tools; 1.5 Process Integration; 1.6 Conclusion and Book Outline; References; 2 Historical Motivations for CMP; 2.1 Advanced Metallization Schemes; 2.1.1 Interconnect Delay Impact on Performance; 2.1.2 Methods of Reducing Interconnect Delay; 2.1.3 Planarity Requirements for Multilevel Metallization; 2.2 Planarization Schemes; 2.2.1 Smoothing and Local Planarization; 2.2.2 Global Planarization
2.3 CMP Planarization2.3.1 Advantages of CMP; 2.3.2 Disadvantages of CMP; 2.3.3 The Challenge of CMP; References; 3 CMP Variables and Manipulations; 3.1 Output Variables; 3.2 Input Variables; References; 4 Mechanical and Electrochemical Concepts for CMP; 4.1 Preston Equation; 4.2 Fluid Layer Interactions; 4.3 Boundary Layer Interactions; 4.3.1 Fluid Boundary Layer; 4.3.2 Double Layer; 4.3.3 Metal Surface Films; 4.3.4 Mechanical Abrasion; 4.4 Abrasion Modes; 4.4.1 Polishing vs. Grinding; 4.4.2 Hertzian Indentation vs. Fluid-Based Wear; 4.5 The Polishing Pad; 4.5.1 Pad Materials and Properties
4.5.2 Pad Conditioning4.6 Electrochemical Phenomena; 4.6.1 Reduction-Oxidation Reactions; 4.6.2 Pourbaix Diagrams; 4.6.3 Mixed Potential Theory; 4.6.4 Example: Copper CMP in NH3-Based Slurries; 4.6.5 Example: Copper-Titanium Interaction; 4.7 Role of Chemistry in CMP; 4.8 Abrasives; References; 5 Oxide CMP Processes - Mechanisms and Models; 5.1 The Role of Chemistry in Oxide Polishing; 5.1.1 Glass Polishing Mechanisms; 5.1.2 The Role of Water in Oxide Polishing; 5.1.3 Chemical Interactions Between Abrasive and Oxide Surface; 5.2 Oxide CMP in Practice; 5.2.1 Polish Rate Results
5.2.2 Planarization Results5.2.3 CMP in Manufacturing; 5.2.4 Yield Issues; 5.3 Summary; References; 6 Tungsten and CMP Processes; 6.1 Inlaid Metal Patterning; 6.1.1 RIE Etch Back; 6.1.2 Metal CMP; 6.2 Tungsten CMP; 6.2.1 Surface Passivation Model for Tungsten CMP; 6.2.2 Tungsten CMP Processes; 6.3 Summary; References; 7 Copper CMP; 7.1 Proposed Model for Copper CMP; 7.2 Surface Layer Formation - Planarization; 7.2.1 Formation of Native Surface Films; 7.2.2 Formation of Nonnative Cu-BTA Surface Film; 7.3 Material Dissolution; 7.3.1 Removal of Abraded Material
7.3.2 Increasing Solubility with Complexing Agent7.3.3 Increasing Dissolution Rate with Oxidizing Agents; 7.3.4 Chemical Aspect of the Copper CMP Model; 7.4 Preston Equation; 7.4.1 Preston Coefficient; 7.4.2 Polish Rates; 7.4.3 Comparison of Kp Values; 7.5 Polish-Induced Stress; 7.6 Pattern Geometry Effects; 7.6.1 Dishing and Erosion in Cu/SiO2 System; 7.6.2 Optimization of Process to Minimize Dishing and Erosion; 7.6.3 Summary; References; 8 CMP of Other Materials and New CMP Applications; 8.1 The Front-End Applications in Silicon IC Fabrication
8.1.1 Polysilicon CMP for Deep Trench Capacitor Fabrication
Record Nr. UNINA-9910830394203321
Steigerwald Joseph M  
Weinheim, : Wiley-VCH, 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemical mechanical planarization of microelectronic materials / / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Chemical mechanical planarization of microelectronic materials / / Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann
Autore Steigerwald Joseph M
Pubbl/distr/stampa Weinheim, : Wiley-VCH, 2004
Descrizione fisica 1 online resource (339 p.)
Disciplina 621.3815
621.38152
Altri autori (Persone) MurarkaS. P
GutmannRonald J
Soggetto topico Microelectronics - Materials
Grinding and polishing
ISBN 1-281-84314-8
9786611843144
3-527-61774-4
3-527-61775-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemical Mechanical Planarization of Microelectronic Materials; CONTENTS; Preface; 1 Chemical Mechanical Planarization - An Introduction; 1.1 Introduction; 1.2 Applications; 1.3 The CMP Process; 1.4 CMP Tools; 1.5 Process Integration; 1.6 Conclusion and Book Outline; References; 2 Historical Motivations for CMP; 2.1 Advanced Metallization Schemes; 2.1.1 Interconnect Delay Impact on Performance; 2.1.2 Methods of Reducing Interconnect Delay; 2.1.3 Planarity Requirements for Multilevel Metallization; 2.2 Planarization Schemes; 2.2.1 Smoothing and Local Planarization; 2.2.2 Global Planarization
2.3 CMP Planarization2.3.1 Advantages of CMP; 2.3.2 Disadvantages of CMP; 2.3.3 The Challenge of CMP; References; 3 CMP Variables and Manipulations; 3.1 Output Variables; 3.2 Input Variables; References; 4 Mechanical and Electrochemical Concepts for CMP; 4.1 Preston Equation; 4.2 Fluid Layer Interactions; 4.3 Boundary Layer Interactions; 4.3.1 Fluid Boundary Layer; 4.3.2 Double Layer; 4.3.3 Metal Surface Films; 4.3.4 Mechanical Abrasion; 4.4 Abrasion Modes; 4.4.1 Polishing vs. Grinding; 4.4.2 Hertzian Indentation vs. Fluid-Based Wear; 4.5 The Polishing Pad; 4.5.1 Pad Materials and Properties
4.5.2 Pad Conditioning4.6 Electrochemical Phenomena; 4.6.1 Reduction-Oxidation Reactions; 4.6.2 Pourbaix Diagrams; 4.6.3 Mixed Potential Theory; 4.6.4 Example: Copper CMP in NH3-Based Slurries; 4.6.5 Example: Copper-Titanium Interaction; 4.7 Role of Chemistry in CMP; 4.8 Abrasives; References; 5 Oxide CMP Processes - Mechanisms and Models; 5.1 The Role of Chemistry in Oxide Polishing; 5.1.1 Glass Polishing Mechanisms; 5.1.2 The Role of Water in Oxide Polishing; 5.1.3 Chemical Interactions Between Abrasive and Oxide Surface; 5.2 Oxide CMP in Practice; 5.2.1 Polish Rate Results
5.2.2 Planarization Results5.2.3 CMP in Manufacturing; 5.2.4 Yield Issues; 5.3 Summary; References; 6 Tungsten and CMP Processes; 6.1 Inlaid Metal Patterning; 6.1.1 RIE Etch Back; 6.1.2 Metal CMP; 6.2 Tungsten CMP; 6.2.1 Surface Passivation Model for Tungsten CMP; 6.2.2 Tungsten CMP Processes; 6.3 Summary; References; 7 Copper CMP; 7.1 Proposed Model for Copper CMP; 7.2 Surface Layer Formation - Planarization; 7.2.1 Formation of Native Surface Films; 7.2.2 Formation of Nonnative Cu-BTA Surface Film; 7.3 Material Dissolution; 7.3.1 Removal of Abraded Material
7.3.2 Increasing Solubility with Complexing Agent7.3.3 Increasing Dissolution Rate with Oxidizing Agents; 7.3.4 Chemical Aspect of the Copper CMP Model; 7.4 Preston Equation; 7.4.1 Preston Coefficient; 7.4.2 Polish Rates; 7.4.3 Comparison of Kp Values; 7.5 Polish-Induced Stress; 7.6 Pattern Geometry Effects; 7.6.1 Dishing and Erosion in Cu/SiO2 System; 7.6.2 Optimization of Process to Minimize Dishing and Erosion; 7.6.3 Summary; References; 8 CMP of Other Materials and New CMP Applications; 8.1 The Front-End Applications in Silicon IC Fabrication
8.1.1 Polysilicon CMP for Deep Trench Capacitor Fabrication
Record Nr. UNINA-9910876723203321
Steigerwald Joseph M  
Weinheim, : Wiley-VCH, 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui