top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Finite antenna arrays and FSS / / Ben A. Munk
Finite antenna arrays and FSS / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa [Piscataway, New Jersey?] : , : IEEE Press, , c2003
Descrizione fisica 1 PDF (xxix, 357 pages) : illustrations
Disciplina 621.381/3
Soggetto topico Microwave antennas
Antenna arrays
Frequency selective surfaces
Electrical Engineering
Electrical & Computer Engineering
Engineering & Applied Sciences
ISBN 1-280-55651-X
9786610556519
0-470-34798-8
0-471-45754-X
0-471-45753-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Preface -- Acknowledgments -- Symbols and Definitions -- 1. Introduction -- 1.1 Why Consider Finite Arrays? -- 1.2 Surface Waves Unique to Finite Periodic Structures -- 1.3 Effects of Surface Waves -- 1.4 How Do We Control the Surface Waves? -- 1.5 Common Misconceptions -- 1.6 Conclusion -- 1.7 Problems -- 2. On the RCS of Arrays -- 2.1 Introduction -- 2.2 Fundamentals of Antenna RCS -- 2.3 How to Obtain a Low tot by Cancellation (Not Recommended) -- 2.4 How Do We Obtain Low tot Over a Broad Band? -- 2.5 A Little History -- 2.6 On the RCS of Arrays -- 2.7 An Alternative Approach: The Equivalent Circuit -- 2.8 On the Radiation from Infinite vs. Finite Arrays -- 2.9 On Transmitting, Receiving and Scattering Radiation Pattern of Finite Arrays -- 2.10 Minimum versus Non-Minimum Scattering Antennas -- 2.11 Other Non-Minimum Scattering Antennas -- 2.12. How to Prevent Coupling Between the Elements Through the Feed Network -- 2.12 How to Eliminate Backscatter Due to Tapered Aperture Illumination -- 2.13 Common Misconceptions -- 2.15 Summary -- 2.16 Problems -- 3. Theory -- 3.1 Introduction -- 3.2 The Vector Potential and the H-Field for Column Arrays of Hertzian Elements -- 3.3 Case I: Longitudinal Elements -- 3.4 Case II: Transverse Elements -- 3.5 Discussion -- 3.6 Determination of the Element Currents -- 3.7 The Double Infinite Arrays with Arbitrary Element Orientation -- 3.8 Conclusions -- 3.9 Problems -- 4. Surface on Passive Surfaces of Finite Extent -- 4.1 Introduction -- 4.2 Model -- 4.3 The Infinite Array Case -- 4.4 The Finite Array Case Excited by Generators -- 4.5 The Element Currents on a Finite Array Excited by an Incident Wave -- 4.6 How the Surface Waves are Excited on a Finite Array -- 4.7 How to Obtain the Actual Current Components -- 4.8 The Bistatic Scattered Field from a Finite Array -- 4.9 Parametric Study -- 4.10 How to Control Surface Waves -- 4.11 Finite Tuning the Load Resistors at a Single Frequency -- 4.12 Variation with Angle of Incidence.
4.13 The Bistatic Scattered Field -- 4.14 Previous Work -- 4.15 On Scattering from Faceted Radomes -- 4.16 Effects of Discontinuities in the Panels -- 4.17 Scanning in the E-plane -- 4.18 Effect of a Groundplane -- 4.19 Common Misconceptions Concerning Element Currents on Finite Arrays -- 4.20 Conclusion -- 4.21 Problems -- 5. Finite Active Arrays -- 5.1 Introduction -- 5.2 Modeling of a Finite x Infinite Groundplane -- 5.3 Finite x Infinite Array with an FSS Groundplane -- 5.4 Micro Management of the Backscattered Field -- 5.5 The Model for Studying Surface Waves -- 5.6 Controlling Surface Waves on Finite FSS Groundplanes -- 5.7 Controlling Surface Waves on Finite Arrays of Active Elements with FSS Groundplane -- 5.8 The Backscatterd Fields from the Triads in a Large Array -- 5.9 On the Bistatic Scattered Field from a Large Array -- 5.10 Further Reduction: Broadband Matching -- 5.11 Common Misconceptions -- 5.12 Conclusion -- 5.13 Problems -- 6. Broadband Wire Arrays -- 6.1 Introduction -- 6.2 The Equivalent Circuit -- 6.3 An Array with Groundplane and No Dielectric -- 6.4 Practical Layouts of Closely Spaced Dipole Arrays -- 6.5 Combination of the Impedance Components -- 6.6 How to Obtain Grater Broadwidth -- 6.7 Array with a Groundplane and a Single Dielectric Slab -- 6.8 Actual Calculated Case: Array with Groundplane and Single Dielectric Slab -- 6.9 Array with Groundplane and Two Dielectric Slab -- 6.10 Comparison Between the Single and Double Slab Array -- 6.11 Calculated Scan Impedance for Array with Groundplane and Two Dielectric Slabs -- 6.12 Common Misconceptions -- 6.13 Conclusions -- 7. An Omnidirectional Antenna with Low RCS -- 7.1 Introduction -- 7.2 The Concept -- 7.3 How Do We Feed the Elements? -- 7.4 Calculated Scattering Pattern for Omnidirectional Antenna with Low RCS -- 7.5 Measured Backscatter from a Low RCS Omnidirectional Antenna -- 7.6 Common Misconceptions -- 7.7 Conclusions and Recommendations -- 8. The RCS of Two-Dimensional Parabolic Antennas.
8.1 The Major Scattering Components -- 8.2 Total Scattering from a Parabolic Reflector with a Typical Feed -- 8.3 Practical Execution of the Low RCS Feed -- 8.4 Out of Band Reduction -- 8.5 Common Misconceptions on Edge Currents -- 8.6 Conclusion -- 9. Aperiodicity: Is it a Good Idea? -- 9.1 Introduction -- 9.2 General Analysis of Periodic Structures with Perturbation of Element Loads and/or Inter-element Spacings -- 9.3 Perturbation of Arrays of Tripoles -- 9.4 Making Use of Our Observations -- 9.5 Anomalies due to Insufficient Number of Models -- 9.6 Aperiodicity on Finite Arrays -- 9.7 Conclusions -- 10. Summary and Final Remarks -- 10.1 Summary -- 10.2 Are We Going in the Right Direction? -- 10.3 Let Use Make Up! -- Appendix A. Determination of Transformation and Position Circles -- Appendix B. Broadband Matching -- Appendix C. Meander-Line Polarizers for Oblique Incidence -- Appendix D. On the Scan versus the Embedded Impedance -- References -- Index.
Record Nr. UNISA-996211652303316
Munk Ben (Benedikt A.)  
[Piscataway, New Jersey?] : , : IEEE Press, , c2003
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite antenna arrays and FSS / / Ben A. Munk
Finite antenna arrays and FSS / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa [Piscataway, New Jersey?] : , : IEEE Press, , c2003
Descrizione fisica 1 PDF (xxix, 357 pages) : illustrations
Disciplina 621.381/3
Soggetto topico Microwave antennas
Antenna arrays
Frequency selective surfaces
Electrical Engineering
Electrical & Computer Engineering
Engineering & Applied Sciences
ISBN 1-280-55651-X
9786610556519
0-470-34798-8
0-471-45754-X
0-471-45753-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Preface -- Acknowledgments -- Symbols and Definitions -- 1. Introduction -- 1.1 Why Consider Finite Arrays? -- 1.2 Surface Waves Unique to Finite Periodic Structures -- 1.3 Effects of Surface Waves -- 1.4 How Do We Control the Surface Waves? -- 1.5 Common Misconceptions -- 1.6 Conclusion -- 1.7 Problems -- 2. On the RCS of Arrays -- 2.1 Introduction -- 2.2 Fundamentals of Antenna RCS -- 2.3 How to Obtain a Low tot by Cancellation (Not Recommended) -- 2.4 How Do We Obtain Low tot Over a Broad Band? -- 2.5 A Little History -- 2.6 On the RCS of Arrays -- 2.7 An Alternative Approach: The Equivalent Circuit -- 2.8 On the Radiation from Infinite vs. Finite Arrays -- 2.9 On Transmitting, Receiving and Scattering Radiation Pattern of Finite Arrays -- 2.10 Minimum versus Non-Minimum Scattering Antennas -- 2.11 Other Non-Minimum Scattering Antennas -- 2.12. How to Prevent Coupling Between the Elements Through the Feed Network -- 2.12 How to Eliminate Backscatter Due to Tapered Aperture Illumination -- 2.13 Common Misconceptions -- 2.15 Summary -- 2.16 Problems -- 3. Theory -- 3.1 Introduction -- 3.2 The Vector Potential and the H-Field for Column Arrays of Hertzian Elements -- 3.3 Case I: Longitudinal Elements -- 3.4 Case II: Transverse Elements -- 3.5 Discussion -- 3.6 Determination of the Element Currents -- 3.7 The Double Infinite Arrays with Arbitrary Element Orientation -- 3.8 Conclusions -- 3.9 Problems -- 4. Surface on Passive Surfaces of Finite Extent -- 4.1 Introduction -- 4.2 Model -- 4.3 The Infinite Array Case -- 4.4 The Finite Array Case Excited by Generators -- 4.5 The Element Currents on a Finite Array Excited by an Incident Wave -- 4.6 How the Surface Waves are Excited on a Finite Array -- 4.7 How to Obtain the Actual Current Components -- 4.8 The Bistatic Scattered Field from a Finite Array -- 4.9 Parametric Study -- 4.10 How to Control Surface Waves -- 4.11 Finite Tuning the Load Resistors at a Single Frequency -- 4.12 Variation with Angle of Incidence.
4.13 The Bistatic Scattered Field -- 4.14 Previous Work -- 4.15 On Scattering from Faceted Radomes -- 4.16 Effects of Discontinuities in the Panels -- 4.17 Scanning in the E-plane -- 4.18 Effect of a Groundplane -- 4.19 Common Misconceptions Concerning Element Currents on Finite Arrays -- 4.20 Conclusion -- 4.21 Problems -- 5. Finite Active Arrays -- 5.1 Introduction -- 5.2 Modeling of a Finite x Infinite Groundplane -- 5.3 Finite x Infinite Array with an FSS Groundplane -- 5.4 Micro Management of the Backscattered Field -- 5.5 The Model for Studying Surface Waves -- 5.6 Controlling Surface Waves on Finite FSS Groundplanes -- 5.7 Controlling Surface Waves on Finite Arrays of Active Elements with FSS Groundplane -- 5.8 The Backscatterd Fields from the Triads in a Large Array -- 5.9 On the Bistatic Scattered Field from a Large Array -- 5.10 Further Reduction: Broadband Matching -- 5.11 Common Misconceptions -- 5.12 Conclusion -- 5.13 Problems -- 6. Broadband Wire Arrays -- 6.1 Introduction -- 6.2 The Equivalent Circuit -- 6.3 An Array with Groundplane and No Dielectric -- 6.4 Practical Layouts of Closely Spaced Dipole Arrays -- 6.5 Combination of the Impedance Components -- 6.6 How to Obtain Grater Broadwidth -- 6.7 Array with a Groundplane and a Single Dielectric Slab -- 6.8 Actual Calculated Case: Array with Groundplane and Single Dielectric Slab -- 6.9 Array with Groundplane and Two Dielectric Slab -- 6.10 Comparison Between the Single and Double Slab Array -- 6.11 Calculated Scan Impedance for Array with Groundplane and Two Dielectric Slabs -- 6.12 Common Misconceptions -- 6.13 Conclusions -- 7. An Omnidirectional Antenna with Low RCS -- 7.1 Introduction -- 7.2 The Concept -- 7.3 How Do We Feed the Elements? -- 7.4 Calculated Scattering Pattern for Omnidirectional Antenna with Low RCS -- 7.5 Measured Backscatter from a Low RCS Omnidirectional Antenna -- 7.6 Common Misconceptions -- 7.7 Conclusions and Recommendations -- 8. The RCS of Two-Dimensional Parabolic Antennas.
8.1 The Major Scattering Components -- 8.2 Total Scattering from a Parabolic Reflector with a Typical Feed -- 8.3 Practical Execution of the Low RCS Feed -- 8.4 Out of Band Reduction -- 8.5 Common Misconceptions on Edge Currents -- 8.6 Conclusion -- 9. Aperiodicity: Is it a Good Idea? -- 9.1 Introduction -- 9.2 General Analysis of Periodic Structures with Perturbation of Element Loads and/or Inter-element Spacings -- 9.3 Perturbation of Arrays of Tripoles -- 9.4 Making Use of Our Observations -- 9.5 Anomalies due to Insufficient Number of Models -- 9.6 Aperiodicity on Finite Arrays -- 9.7 Conclusions -- 10. Summary and Final Remarks -- 10.1 Summary -- 10.2 Are We Going in the Right Direction? -- 10.3 Let Use Make Up! -- Appendix A. Determination of Transformation and Position Circles -- Appendix B. Broadband Matching -- Appendix C. Meander-Line Polarizers for Oblique Incidence -- Appendix D. On the Scan versus the Embedded Impedance -- References -- Index.
Record Nr. UNINA-9910146076803321
Munk Ben (Benedikt A.)  
[Piscataway, New Jersey?] : , : IEEE Press, , c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite antenna arrays and FSS / / Ben A. Munk
Finite antenna arrays and FSS / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa [Piscataway, New Jersey?] : , : IEEE Press, , c2003
Descrizione fisica 1 PDF (xxix, 357 pages) : illustrations
Disciplina 621.381/3
Soggetto topico Microwave antennas
Antenna arrays
Frequency selective surfaces
Electrical Engineering
Electrical & Computer Engineering
Engineering & Applied Sciences
ISBN 1-280-55651-X
9786610556519
0-470-34798-8
0-471-45754-X
0-471-45753-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Preface -- Acknowledgments -- Symbols and Definitions -- 1. Introduction -- 1.1 Why Consider Finite Arrays? -- 1.2 Surface Waves Unique to Finite Periodic Structures -- 1.3 Effects of Surface Waves -- 1.4 How Do We Control the Surface Waves? -- 1.5 Common Misconceptions -- 1.6 Conclusion -- 1.7 Problems -- 2. On the RCS of Arrays -- 2.1 Introduction -- 2.2 Fundamentals of Antenna RCS -- 2.3 How to Obtain a Low tot by Cancellation (Not Recommended) -- 2.4 How Do We Obtain Low tot Over a Broad Band? -- 2.5 A Little History -- 2.6 On the RCS of Arrays -- 2.7 An Alternative Approach: The Equivalent Circuit -- 2.8 On the Radiation from Infinite vs. Finite Arrays -- 2.9 On Transmitting, Receiving and Scattering Radiation Pattern of Finite Arrays -- 2.10 Minimum versus Non-Minimum Scattering Antennas -- 2.11 Other Non-Minimum Scattering Antennas -- 2.12. How to Prevent Coupling Between the Elements Through the Feed Network -- 2.12 How to Eliminate Backscatter Due to Tapered Aperture Illumination -- 2.13 Common Misconceptions -- 2.15 Summary -- 2.16 Problems -- 3. Theory -- 3.1 Introduction -- 3.2 The Vector Potential and the H-Field for Column Arrays of Hertzian Elements -- 3.3 Case I: Longitudinal Elements -- 3.4 Case II: Transverse Elements -- 3.5 Discussion -- 3.6 Determination of the Element Currents -- 3.7 The Double Infinite Arrays with Arbitrary Element Orientation -- 3.8 Conclusions -- 3.9 Problems -- 4. Surface on Passive Surfaces of Finite Extent -- 4.1 Introduction -- 4.2 Model -- 4.3 The Infinite Array Case -- 4.4 The Finite Array Case Excited by Generators -- 4.5 The Element Currents on a Finite Array Excited by an Incident Wave -- 4.6 How the Surface Waves are Excited on a Finite Array -- 4.7 How to Obtain the Actual Current Components -- 4.8 The Bistatic Scattered Field from a Finite Array -- 4.9 Parametric Study -- 4.10 How to Control Surface Waves -- 4.11 Finite Tuning the Load Resistors at a Single Frequency -- 4.12 Variation with Angle of Incidence.
4.13 The Bistatic Scattered Field -- 4.14 Previous Work -- 4.15 On Scattering from Faceted Radomes -- 4.16 Effects of Discontinuities in the Panels -- 4.17 Scanning in the E-plane -- 4.18 Effect of a Groundplane -- 4.19 Common Misconceptions Concerning Element Currents on Finite Arrays -- 4.20 Conclusion -- 4.21 Problems -- 5. Finite Active Arrays -- 5.1 Introduction -- 5.2 Modeling of a Finite x Infinite Groundplane -- 5.3 Finite x Infinite Array with an FSS Groundplane -- 5.4 Micro Management of the Backscattered Field -- 5.5 The Model for Studying Surface Waves -- 5.6 Controlling Surface Waves on Finite FSS Groundplanes -- 5.7 Controlling Surface Waves on Finite Arrays of Active Elements with FSS Groundplane -- 5.8 The Backscatterd Fields from the Triads in a Large Array -- 5.9 On the Bistatic Scattered Field from a Large Array -- 5.10 Further Reduction: Broadband Matching -- 5.11 Common Misconceptions -- 5.12 Conclusion -- 5.13 Problems -- 6. Broadband Wire Arrays -- 6.1 Introduction -- 6.2 The Equivalent Circuit -- 6.3 An Array with Groundplane and No Dielectric -- 6.4 Practical Layouts of Closely Spaced Dipole Arrays -- 6.5 Combination of the Impedance Components -- 6.6 How to Obtain Grater Broadwidth -- 6.7 Array with a Groundplane and a Single Dielectric Slab -- 6.8 Actual Calculated Case: Array with Groundplane and Single Dielectric Slab -- 6.9 Array with Groundplane and Two Dielectric Slab -- 6.10 Comparison Between the Single and Double Slab Array -- 6.11 Calculated Scan Impedance for Array with Groundplane and Two Dielectric Slabs -- 6.12 Common Misconceptions -- 6.13 Conclusions -- 7. An Omnidirectional Antenna with Low RCS -- 7.1 Introduction -- 7.2 The Concept -- 7.3 How Do We Feed the Elements? -- 7.4 Calculated Scattering Pattern for Omnidirectional Antenna with Low RCS -- 7.5 Measured Backscatter from a Low RCS Omnidirectional Antenna -- 7.6 Common Misconceptions -- 7.7 Conclusions and Recommendations -- 8. The RCS of Two-Dimensional Parabolic Antennas.
8.1 The Major Scattering Components -- 8.2 Total Scattering from a Parabolic Reflector with a Typical Feed -- 8.3 Practical Execution of the Low RCS Feed -- 8.4 Out of Band Reduction -- 8.5 Common Misconceptions on Edge Currents -- 8.6 Conclusion -- 9. Aperiodicity: Is it a Good Idea? -- 9.1 Introduction -- 9.2 General Analysis of Periodic Structures with Perturbation of Element Loads and/or Inter-element Spacings -- 9.3 Perturbation of Arrays of Tripoles -- 9.4 Making Use of Our Observations -- 9.5 Anomalies due to Insufficient Number of Models -- 9.6 Aperiodicity on Finite Arrays -- 9.7 Conclusions -- 10. Summary and Final Remarks -- 10.1 Summary -- 10.2 Are We Going in the Right Direction? -- 10.3 Let Use Make Up! -- Appendix A. Determination of Transformation and Position Circles -- Appendix B. Broadband Matching -- Appendix C. Meander-Line Polarizers for Oblique Incidence -- Appendix D. On the Scan versus the Embedded Impedance -- References -- Index.
Record Nr. UNINA-9910830754303321
Munk Ben (Benedikt A.)  
[Piscataway, New Jersey?] : , : IEEE Press, , c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency selective surfaces [[electronic resource] ] : theory and design / / Ben A. Munk
Frequency selective surfaces [[electronic resource] ] : theory and design / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa New York, : John Wiley, c2000
Descrizione fisica 1 online resource (442 p.)
Disciplina 621.3813
Soggetto topico Frequency selective surfaces
Electric filters
Soggetto genere / forma Electronic books.
ISBN 1-280-25292-8
9786610252923
0-470-35258-2
0-471-72376-2
0-471-72377-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto FREQUENCY SELECTIVE SURFACES; CONTENTS; Foreword I; Foreword II; Preface; Acknowledgments; Symbols and Definitions; 1 General Overview; 1.1 What is a Periodic Surface?; 1.2 Passive Versus Active Arrays; 1.3 Dipole Versus Slot Arrays; 1.4 Complementary Arrays; 1.5 A Little History with Physical Insight; 1.6 How Do We "Shape" the Resonant Curve?; 1.6.1 Cascading Periodic Surfaces without Dielectrics; 1.6.2 Single Periodic Surface with Dielectric Slabs; 1.6.3 Real Hybrid Periodic Structures; 1.7 Application of Periodic Structures; 1.7.1 Hybrid Radomes; 1.7.2 Band-Stop Filters
1.7.3 Dichroic Subreflectors1.7.4 Dichroic Main Reflectors; 1.7.5 Circuit Analog Absorbers; 1.7.6 Meanderline Polarizers; 1.8 Common Misconceptions; 1.9 Grating Lobes; 1.10 Problems; 2 Element Types: A Comparison; 2.1 Introduction; 2.2 Group 1: Center Connected or N-Poles; 2.2.1 "Gangbuster" Surface; 2.2.2 Unloaded Tripole Array; 2.2.3 Anchor Element; 2.2.4 Jerusalem Cross; 2.2.5 Square Spiral Element; 2.3 Group 2: Loop Types; 2.3.1 Four-legged Loaded Element; 2.3.2 Three-legged Loaded Element; 2.3.3 Hexagon Element; 2.4 Group 3: Solid Interior Types; 2.5 Group 4: Combination Elements
2.6 Some Common Misconceptions About Elements2.6.1 Array versus Element Effect; 2.6.2 Bandwidth versus Width of the Elements; 2.7 Comparison of Elements; 2.8 Problems; 3 Evaluating Periodic Structures: An Overview; 3.1 Introduction; 3.2 Single Infinite Case; 3.3 Double Infinite Case; 3.4 Example; 3.5 Common Misconceptions; 3.6 Summary of Our Computational Approach; 3.7 Problems; 4 Spectral Expansion of One- and Two-Dimensional Periodic Structures; 4.1 Introduction; 4.2 The Vector Potential dAq from a Single Infinite Column Array of Hertzian Elements with Arbitrary Orientation p
4.3 Vector Potential dA for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p4.3.1 Rectangular Grid; 4.3.2 Skewed Grid; 4.4 Vector Fields dH(R) and dE(R) for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p; 4.5 Vector Field E(R) for a Double Infinite Array of Elements with Given Current Distribution I(l) and Arbitrary Orientation p; 4.6 Physical Interpretation; 4.7 Induced Voltages in a Linear Antenna; 4.7.1 By a Single Plane Wave; 4.7.2 By a Plane Wave Spectrum; 4.8 More Physical Insight; 4.8.1 Real Space: ry Positive Real
4.8.2 Imaginary Space: ry Negative Imaginary4.9 Region; 4.10 Self-Impedance of a Single Element and of Arrays; 4.11 Examples; 4.1 1.1 Example I: Scattering from an Array of z-Directed Elements; 4.11.2 Example II: Investigation of RA; 4.1 1.3 Example III: Variation of l with Scan Angle; 4.1 1.4 Example IV Scan Impedance ZA as a Function of Scan Angle; Surface Waves; 4.12 Planar Elements of Arbitrary Shape; 4.12.1 Total Radiated Field from an Array with Segmented Elements; 4.12.2 Induced Voltage in a Segmented Element; 4.12.3 Mutual Impedance Z1',1 for Arrays with Segmented Elements
4.13 Common Misconceptions
Record Nr. UNINA-9910146068803321
Munk Ben (Benedikt A.)  
New York, : John Wiley, c2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency selective surfaces [[electronic resource] ] : theory and design / / Ben A. Munk
Frequency selective surfaces [[electronic resource] ] : theory and design / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa New York, : John Wiley, c2000
Descrizione fisica 1 online resource (442 p.)
Disciplina 621.3813
Soggetto topico Frequency selective surfaces
Electric filters
ISBN 1-280-25292-8
9786610252923
0-470-35258-2
0-471-72376-2
0-471-72377-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto FREQUENCY SELECTIVE SURFACES; CONTENTS; Foreword I; Foreword II; Preface; Acknowledgments; Symbols and Definitions; 1 General Overview; 1.1 What is a Periodic Surface?; 1.2 Passive Versus Active Arrays; 1.3 Dipole Versus Slot Arrays; 1.4 Complementary Arrays; 1.5 A Little History with Physical Insight; 1.6 How Do We "Shape" the Resonant Curve?; 1.6.1 Cascading Periodic Surfaces without Dielectrics; 1.6.2 Single Periodic Surface with Dielectric Slabs; 1.6.3 Real Hybrid Periodic Structures; 1.7 Application of Periodic Structures; 1.7.1 Hybrid Radomes; 1.7.2 Band-Stop Filters
1.7.3 Dichroic Subreflectors1.7.4 Dichroic Main Reflectors; 1.7.5 Circuit Analog Absorbers; 1.7.6 Meanderline Polarizers; 1.8 Common Misconceptions; 1.9 Grating Lobes; 1.10 Problems; 2 Element Types: A Comparison; 2.1 Introduction; 2.2 Group 1: Center Connected or N-Poles; 2.2.1 "Gangbuster" Surface; 2.2.2 Unloaded Tripole Array; 2.2.3 Anchor Element; 2.2.4 Jerusalem Cross; 2.2.5 Square Spiral Element; 2.3 Group 2: Loop Types; 2.3.1 Four-legged Loaded Element; 2.3.2 Three-legged Loaded Element; 2.3.3 Hexagon Element; 2.4 Group 3: Solid Interior Types; 2.5 Group 4: Combination Elements
2.6 Some Common Misconceptions About Elements2.6.1 Array versus Element Effect; 2.6.2 Bandwidth versus Width of the Elements; 2.7 Comparison of Elements; 2.8 Problems; 3 Evaluating Periodic Structures: An Overview; 3.1 Introduction; 3.2 Single Infinite Case; 3.3 Double Infinite Case; 3.4 Example; 3.5 Common Misconceptions; 3.6 Summary of Our Computational Approach; 3.7 Problems; 4 Spectral Expansion of One- and Two-Dimensional Periodic Structures; 4.1 Introduction; 4.2 The Vector Potential dAq from a Single Infinite Column Array of Hertzian Elements with Arbitrary Orientation p
4.3 Vector Potential dA for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p4.3.1 Rectangular Grid; 4.3.2 Skewed Grid; 4.4 Vector Fields dH(R) and dE(R) for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p; 4.5 Vector Field E(R) for a Double Infinite Array of Elements with Given Current Distribution I(l) and Arbitrary Orientation p; 4.6 Physical Interpretation; 4.7 Induced Voltages in a Linear Antenna; 4.7.1 By a Single Plane Wave; 4.7.2 By a Plane Wave Spectrum; 4.8 More Physical Insight; 4.8.1 Real Space: ry Positive Real
4.8.2 Imaginary Space: ry Negative Imaginary4.9 Region; 4.10 Self-Impedance of a Single Element and of Arrays; 4.11 Examples; 4.1 1.1 Example I: Scattering from an Array of z-Directed Elements; 4.11.2 Example II: Investigation of RA; 4.1 1.3 Example III: Variation of l with Scan Angle; 4.1 1.4 Example IV Scan Impedance ZA as a Function of Scan Angle; Surface Waves; 4.12 Planar Elements of Arbitrary Shape; 4.12.1 Total Radiated Field from an Array with Segmented Elements; 4.12.2 Induced Voltage in a Segmented Element; 4.12.3 Mutual Impedance Z1',1 for Arrays with Segmented Elements
4.13 Common Misconceptions
Record Nr. UNINA-9910829968203321
Munk Ben (Benedikt A.)  
New York, : John Wiley, c2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency selective surfaces : theory and design / / Ben A. Munk
Frequency selective surfaces : theory and design / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa New York, : John Wiley, c2000
Descrizione fisica 1 online resource (442 p.)
Disciplina 621.381/3
Soggetto topico Frequency selective surfaces
Electric filters
ISBN 1-280-25292-8
9786610252923
0-470-35258-2
0-471-72376-2
0-471-72377-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto FREQUENCY SELECTIVE SURFACES; CONTENTS; Foreword I; Foreword II; Preface; Acknowledgments; Symbols and Definitions; 1 General Overview; 1.1 What is a Periodic Surface?; 1.2 Passive Versus Active Arrays; 1.3 Dipole Versus Slot Arrays; 1.4 Complementary Arrays; 1.5 A Little History with Physical Insight; 1.6 How Do We "Shape" the Resonant Curve?; 1.6.1 Cascading Periodic Surfaces without Dielectrics; 1.6.2 Single Periodic Surface with Dielectric Slabs; 1.6.3 Real Hybrid Periodic Structures; 1.7 Application of Periodic Structures; 1.7.1 Hybrid Radomes; 1.7.2 Band-Stop Filters
1.7.3 Dichroic Subreflectors1.7.4 Dichroic Main Reflectors; 1.7.5 Circuit Analog Absorbers; 1.7.6 Meanderline Polarizers; 1.8 Common Misconceptions; 1.9 Grating Lobes; 1.10 Problems; 2 Element Types: A Comparison; 2.1 Introduction; 2.2 Group 1: Center Connected or N-Poles; 2.2.1 "Gangbuster" Surface; 2.2.2 Unloaded Tripole Array; 2.2.3 Anchor Element; 2.2.4 Jerusalem Cross; 2.2.5 Square Spiral Element; 2.3 Group 2: Loop Types; 2.3.1 Four-legged Loaded Element; 2.3.2 Three-legged Loaded Element; 2.3.3 Hexagon Element; 2.4 Group 3: Solid Interior Types; 2.5 Group 4: Combination Elements
2.6 Some Common Misconceptions About Elements2.6.1 Array versus Element Effect; 2.6.2 Bandwidth versus Width of the Elements; 2.7 Comparison of Elements; 2.8 Problems; 3 Evaluating Periodic Structures: An Overview; 3.1 Introduction; 3.2 Single Infinite Case; 3.3 Double Infinite Case; 3.4 Example; 3.5 Common Misconceptions; 3.6 Summary of Our Computational Approach; 3.7 Problems; 4 Spectral Expansion of One- and Two-Dimensional Periodic Structures; 4.1 Introduction; 4.2 The Vector Potential dAq from a Single Infinite Column Array of Hertzian Elements with Arbitrary Orientation p
4.3 Vector Potential dA for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p4.3.1 Rectangular Grid; 4.3.2 Skewed Grid; 4.4 Vector Fields dH(R) and dE(R) for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p; 4.5 Vector Field E(R) for a Double Infinite Array of Elements with Given Current Distribution I(l) and Arbitrary Orientation p; 4.6 Physical Interpretation; 4.7 Induced Voltages in a Linear Antenna; 4.7.1 By a Single Plane Wave; 4.7.2 By a Plane Wave Spectrum; 4.8 More Physical Insight; 4.8.1 Real Space: ry Positive Real
4.8.2 Imaginary Space: ry Negative Imaginary4.9 Region; 4.10 Self-Impedance of a Single Element and of Arrays; 4.11 Examples; 4.1 1.1 Example I: Scattering from an Array of z-Directed Elements; 4.11.2 Example II: Investigation of RA; 4.1 1.3 Example III: Variation of l with Scan Angle; 4.1 1.4 Example IV Scan Impedance ZA as a Function of Scan Angle; Surface Waves; 4.12 Planar Elements of Arbitrary Shape; 4.12.1 Total Radiated Field from an Array with Segmented Elements; 4.12.2 Induced Voltage in a Segmented Element; 4.12.3 Mutual Impedance Z1',1 for Arrays with Segmented Elements
4.13 Common Misconceptions
Record Nr. UNINA-9910876820003321
Munk Ben (Benedikt A.)  
New York, : John Wiley, c2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2009
Descrizione fisica 1 online resource (209 p.)
Disciplina 621.3028/4
621.30284
Soggetto topico Metamaterials
Antennas (Electronics) - Materials
Electromagnetism
Radio wave propagation - Mathematical models
Antennas (Electronics) - Experiments
Negative refraction
Negative refractive index
ISBN 1-282-03077-9
9786612030772
0-470-42387-0
0-470-42386-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto METAMATERIALS; CONTENTS; Foreword; Preface; ACKNOWLEDGMENTS; 1 Why Periodic Structures Cannot Synthesize Negative Indices of Refraction; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Background; 1.2 Current Assumptions Regarding Veselago's Medium; 1.2.1 Negative Index of Refraction; 1.2.2 Phase Advance when n(1) < 0; 1.2.3 Evanescent Waves Grow with Distance for n(1) < 0; 1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet for n(1) < 0; 1.3 Fantastic Designs Could Be Realized if Veselago's Material Existed; 1.4 How Veselago's Medium Is Envisioned To Be Synthesized Using Periodic Structures
1.5 How Does a Periodic Structure Refract?1.5.1 Infinite Arrays; 1.5.2 What About Finite Arrays?; 1.6 On the Field Surrounding an Infinite Periodic Structure of Arbitrary Wire Elements Located in One or More Arrays; 1.6.1 Single Array of Elements with One Segment; 1.6.2 Single Array of Elements with Two Segments; 1.6.3 Single Array of Elements with an Arbitrary Number of Segments; 1.6.4 On Grating Lobes and Backward-Traveling Waves; 1.6.5 Two Arrays of Elements with an Arbitrary Number of Segments; 1.6.6 Can Arrays of Wires Ever Change the Direction of the Incident Field?
1.7 On Increasing Evanescent Waves: A Fatal Misconception1.8 Preliminary Conclusion: Synthesizing Veselago's Medium by a Periodic Structure Is Not Feasible; 1.9 On Transmission-Line Dispersion: Backward-Traveling Waves; 1.9.1 Transmission Lines; 1.9.2 Periodic Structures; 1.10 Regarding Veselago's Conclusion: Are There Deficiencies?; 1.10.1 Background; 1.10.2 Veselago's Argument for a Negative Index of Refraction; 1.10.3 Veselago's Flat Lens: Is It Really Realistic?; 1.11 Conclusions; 1.12 Common Misconceptions; 1.12.1 Artificial Dielectrics: Do They Really Refract?
1.12.2 Real Dielectrics: How Do They Refract?1.12.3 On the E- and H-Fields; 1.12.4 On Concentric Split-Ring Resonators; 1.12.5 What Would Veselago Have Asked if . . .; 1.12.6 On "Magic" Structures; References; 2 On Cloaks and Reactive Radomes; 2.1 Cloaks; 2.1.1 Concept; 2.1.2 Prior Art; 2.1.3 Alternative Explanation; 2.1.4 Alternative Design; 2.1.5 What Can You Really Expect from a Cloak?; 2.2 Reactive Radomes; 2.2.1 Infinite Planar Array with and Without Reactive Radome; 2.2.2 Line Arrays and Single Elements; 2.3 Common Misconceptions; 2.3.1 Misinterpretation of Calculated Results
2.3.2 Ultimately: What Power Can You Expect from a Short Dipole Encapsulated in a Small Spherical Radome?2.4 Concluding Remarks; References; 3 Absorbers with Windows; 3.1 Introduction; 3.2 Statement of the Problem; 3.3 Concept; 3.4 Conceptual Designs; 3.5 Extension to Arbitrary Polarization; 3.6 The High-Frequency Band; 3.7 Complete Conceptual Rasorber Design; 3.8 Practical Designs; 3.9 Other Applications of Traps: Multiband Arrays; Reference; 4 On Designing Absorbers for an Oblique Angle of Incidence; 4.1 Lagarkov's and Classical Designs; 4.2 Salisbury Screen; 4.3 Scan Compensation
4.4 Frequency Compensation
Record Nr. UNINA-9910146147603321
Munk Ben (Benedikt A.)  
Hoboken, N.J., : John Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk
Metamaterials [[electronic resource] ] : critique and alternatives / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2009
Descrizione fisica 1 online resource (209 p.)
Disciplina 621.3028/4
621.30284
Soggetto topico Metamaterials
Antennas (Electronics) - Materials
Electromagnetism
Radio wave propagation - Mathematical models
Antennas (Electronics) - Experiments
Negative refraction
Negative refractive index
ISBN 1-282-03077-9
9786612030772
0-470-42387-0
0-470-42386-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto METAMATERIALS; CONTENTS; Foreword; Preface; ACKNOWLEDGMENTS; 1 Why Periodic Structures Cannot Synthesize Negative Indices of Refraction; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Background; 1.2 Current Assumptions Regarding Veselago's Medium; 1.2.1 Negative Index of Refraction; 1.2.2 Phase Advance when n(1) < 0; 1.2.3 Evanescent Waves Grow with Distance for n(1) < 0; 1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet for n(1) < 0; 1.3 Fantastic Designs Could Be Realized if Veselago's Material Existed; 1.4 How Veselago's Medium Is Envisioned To Be Synthesized Using Periodic Structures
1.5 How Does a Periodic Structure Refract?1.5.1 Infinite Arrays; 1.5.2 What About Finite Arrays?; 1.6 On the Field Surrounding an Infinite Periodic Structure of Arbitrary Wire Elements Located in One or More Arrays; 1.6.1 Single Array of Elements with One Segment; 1.6.2 Single Array of Elements with Two Segments; 1.6.3 Single Array of Elements with an Arbitrary Number of Segments; 1.6.4 On Grating Lobes and Backward-Traveling Waves; 1.6.5 Two Arrays of Elements with an Arbitrary Number of Segments; 1.6.6 Can Arrays of Wires Ever Change the Direction of the Incident Field?
1.7 On Increasing Evanescent Waves: A Fatal Misconception1.8 Preliminary Conclusion: Synthesizing Veselago's Medium by a Periodic Structure Is Not Feasible; 1.9 On Transmission-Line Dispersion: Backward-Traveling Waves; 1.9.1 Transmission Lines; 1.9.2 Periodic Structures; 1.10 Regarding Veselago's Conclusion: Are There Deficiencies?; 1.10.1 Background; 1.10.2 Veselago's Argument for a Negative Index of Refraction; 1.10.3 Veselago's Flat Lens: Is It Really Realistic?; 1.11 Conclusions; 1.12 Common Misconceptions; 1.12.1 Artificial Dielectrics: Do They Really Refract?
1.12.2 Real Dielectrics: How Do They Refract?1.12.3 On the E- and H-Fields; 1.12.4 On Concentric Split-Ring Resonators; 1.12.5 What Would Veselago Have Asked if . . .; 1.12.6 On "Magic" Structures; References; 2 On Cloaks and Reactive Radomes; 2.1 Cloaks; 2.1.1 Concept; 2.1.2 Prior Art; 2.1.3 Alternative Explanation; 2.1.4 Alternative Design; 2.1.5 What Can You Really Expect from a Cloak?; 2.2 Reactive Radomes; 2.2.1 Infinite Planar Array with and Without Reactive Radome; 2.2.2 Line Arrays and Single Elements; 2.3 Common Misconceptions; 2.3.1 Misinterpretation of Calculated Results
2.3.2 Ultimately: What Power Can You Expect from a Short Dipole Encapsulated in a Small Spherical Radome?2.4 Concluding Remarks; References; 3 Absorbers with Windows; 3.1 Introduction; 3.2 Statement of the Problem; 3.3 Concept; 3.4 Conceptual Designs; 3.5 Extension to Arbitrary Polarization; 3.6 The High-Frequency Band; 3.7 Complete Conceptual Rasorber Design; 3.8 Practical Designs; 3.9 Other Applications of Traps: Multiband Arrays; Reference; 4 On Designing Absorbers for an Oblique Angle of Incidence; 4.1 Lagarkov's and Classical Designs; 4.2 Salisbury Screen; 4.3 Scan Compensation
4.4 Frequency Compensation
Record Nr. UNINA-9910830835403321
Munk Ben (Benedikt A.)  
Hoboken, N.J., : John Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metamaterials : critique and alternatives / / Ben A. Munk
Metamaterials : critique and alternatives / / Ben A. Munk
Autore Munk Ben (Benedikt A.)
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2009
Descrizione fisica 1 online resource (209 p.)
Disciplina 621.3028/4
Soggetto topico Metamaterials
Antennas (Electronics) - Materials
Electromagnetism
Radio wave propagation - Mathematical models
Antennas (Electronics) - Experiments
Negative refraction
Negative refractive index
ISBN 1-282-03077-9
9786612030772
0-470-42387-0
0-470-42386-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto METAMATERIALS; CONTENTS; Foreword; Preface; ACKNOWLEDGMENTS; 1 Why Periodic Structures Cannot Synthesize Negative Indices of Refraction; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Background; 1.2 Current Assumptions Regarding Veselago's Medium; 1.2.1 Negative Index of Refraction; 1.2.2 Phase Advance when n(1) < 0; 1.2.3 Evanescent Waves Grow with Distance for n(1) < 0; 1.2.4 The Field and Phase Vectors Form a Left-Handed Triplet for n(1) < 0; 1.3 Fantastic Designs Could Be Realized if Veselago's Material Existed; 1.4 How Veselago's Medium Is Envisioned To Be Synthesized Using Periodic Structures
1.5 How Does a Periodic Structure Refract?1.5.1 Infinite Arrays; 1.5.2 What About Finite Arrays?; 1.6 On the Field Surrounding an Infinite Periodic Structure of Arbitrary Wire Elements Located in One or More Arrays; 1.6.1 Single Array of Elements with One Segment; 1.6.2 Single Array of Elements with Two Segments; 1.6.3 Single Array of Elements with an Arbitrary Number of Segments; 1.6.4 On Grating Lobes and Backward-Traveling Waves; 1.6.5 Two Arrays of Elements with an Arbitrary Number of Segments; 1.6.6 Can Arrays of Wires Ever Change the Direction of the Incident Field?
1.7 On Increasing Evanescent Waves: A Fatal Misconception1.8 Preliminary Conclusion: Synthesizing Veselago's Medium by a Periodic Structure Is Not Feasible; 1.9 On Transmission-Line Dispersion: Backward-Traveling Waves; 1.9.1 Transmission Lines; 1.9.2 Periodic Structures; 1.10 Regarding Veselago's Conclusion: Are There Deficiencies?; 1.10.1 Background; 1.10.2 Veselago's Argument for a Negative Index of Refraction; 1.10.3 Veselago's Flat Lens: Is It Really Realistic?; 1.11 Conclusions; 1.12 Common Misconceptions; 1.12.1 Artificial Dielectrics: Do They Really Refract?
1.12.2 Real Dielectrics: How Do They Refract?1.12.3 On the E- and H-Fields; 1.12.4 On Concentric Split-Ring Resonators; 1.12.5 What Would Veselago Have Asked if . . .; 1.12.6 On "Magic" Structures; References; 2 On Cloaks and Reactive Radomes; 2.1 Cloaks; 2.1.1 Concept; 2.1.2 Prior Art; 2.1.3 Alternative Explanation; 2.1.4 Alternative Design; 2.1.5 What Can You Really Expect from a Cloak?; 2.2 Reactive Radomes; 2.2.1 Infinite Planar Array with and Without Reactive Radome; 2.2.2 Line Arrays and Single Elements; 2.3 Common Misconceptions; 2.3.1 Misinterpretation of Calculated Results
2.3.2 Ultimately: What Power Can You Expect from a Short Dipole Encapsulated in a Small Spherical Radome?2.4 Concluding Remarks; References; 3 Absorbers with Windows; 3.1 Introduction; 3.2 Statement of the Problem; 3.3 Concept; 3.4 Conceptual Designs; 3.5 Extension to Arbitrary Polarization; 3.6 The High-Frequency Band; 3.7 Complete Conceptual Rasorber Design; 3.8 Practical Designs; 3.9 Other Applications of Traps: Multiband Arrays; Reference; 4 On Designing Absorbers for an Oblique Angle of Incidence; 4.1 Lagarkov's and Classical Designs; 4.2 Salisbury Screen; 4.3 Scan Compensation
4.4 Frequency Compensation
Record Nr. UNINA-9910877650103321
Munk Ben (Benedikt A.)  
Hoboken, N.J., : John Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui