top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Gauge integral structures for stochastic calculus and quantum electrodynamics / / Patrick Muldowney
Gauge integral structures for stochastic calculus and quantum electrodynamics / / Patrick Muldowney
Autore Muldowney P (Patrick), <1946->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (382 pages)
Disciplina 519.22
Soggetto topico Stochastic analysis
Henstock-Kurzweil integral
Feynman integrals
Soggetto genere / forma Electronic books.
ISBN 1-119-59552-5
1-119-59550-9
1-119-59554-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555288603321
Muldowney P (Patrick), <1946->  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gauge integral structures for stochastic calculus and quantum electrodynamics / / Patrick Muldowney
Gauge integral structures for stochastic calculus and quantum electrodynamics / / Patrick Muldowney
Autore Muldowney P (Patrick), <1946->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (382 pages)
Disciplina 519.22
Soggetto topico Stochastic analysis
Henstock-Kurzweil integral
Feynman integrals
ISBN 1-119-59552-5
1-119-59550-9
1-119-59554-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic integration -- Random variation -- Integration and probability -- Stochastic processes -- Brownian motion -- Stochastic sums -- Gauges for product spaces -- Quantum field theory -- Quantum electrodynamics.
Record Nr. UNINA-9910831097703321
Muldowney P (Patrick), <1946->  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration / / Patrick Muldowney
A modern theory of random variation : with applications in stochastic calculus, financial mathematics, and Feynman integration / / Patrick Muldowney
Autore Muldowney P (Patrick), <1946->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (545 p.)
Disciplina 519.2/3
Soggetto topico Random variables
Calculus of variations
Path integrals
Mathematical analysis
ISBN 9781118345948
1118345940
9781118345955
1118345959
9781283835008
1283835002
9781118345924
1118345924
Classificazione MAT034000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration; Contents; Preface; Symbols; 1 Prologue; 1.1 About This Book; 1.2 About the Concepts; 1.3 About the Notation; 1.4 Riemann, Stieltjes, and Burkill Integrals; 1.5 The -Complete Integrals; 1.6 Riemann Sums in Statistical Calculation; 1.7 Random Variability; 1.8 Contingent and Elementary Forms; 1.9 Comparison With Axiomatic Theory; 1.10 What Is Probability?; 1.11 Joint Variability; 1.12 Independence; 1.13 Stochastic Processes; 2 Introduction
2.1 Riemann Sums in Integration2.2 The -Complete Integrals in Domain ]0,1]; 2.3 Divisibility of the Domain ]0,1]; 2.4 Fundamental Theorem of Calculus; 2.5 What Is Integrability?; 2.6 Riemann Sums and Random Variability; 2.7 How to Integrate a Function; 2.8 Extension of the Lebesgue Integral; 2.9 Riemann Sums in Basic Probability; 2.10 Variation and Outer Measure; 2.11 Outer Measure and Variation in [0,1]; 2.12 The Henstock Lemma; 2.13 Unbounded Sample Spaces; 2.14 Cauchy Extension of the Riemann Integral; 2.15 Integrability on ]0,(infinity)[; 2.16 ""Negative Probability""
2.17 Henstock Integration in Rn2.18 Conclusion; 3 Infinite-Dimensional Integration; 3.1 Elements of Infinite-Dimensional Domain; 3.2 Partitions of RT; 3.3 Regular Partitions of RT; 3.4 δ-Fine Partially Regular Partitions; 3.5 Binary Partitions of RT; 3.6 Riemann Sums in RT; 3.7 Integrands in RT; 3.8 Definition of the Integral in RT; 3.9 Integrating Functions in RT; 4 Theory of the Integral; 4.1 The Henstock Integral; 4.2 Gauges for RT; 4.3 Another Integration System in RT; 4.4 Validation of Gauges in RT; 4.5 The Burkill-Complete Integral in RT; 4.6 Basic Properties of the Integral
5.10 Introduction to Central Limit Theorem5.11 Proof of Central Limit Theorem; 5.12 Probability Symbols; 5.13 Measurability and Probability; 5.14 The Calculus of Probabilities; 6 Gaussian Integrals; 6.1 Fresnel's Integral; 6.2 Evaluation of Fresnel's Integral; 6.3 Fresnel's Integral in Finite Dimensions; 6.4 Fresnel Distribution Function in Rn; 6.5 Infinite-Dimensional Fresnel Integral; 6.6 Integrability on RT; 6.7 The Fresnel Function Is VBG*; 6.8 Incremental Fresnel Integral; 6.9 Fresnel Continuity Properties; 7 Brownian Motion; 7.1 c-Brownian Motion; 7.2 Brownian Motion With Drift
7.3 Geometric Brownian Motion
Record Nr. UNINA-9910141367303321
Muldowney P (Patrick), <1946->  
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui