The effective crystal field potential [[electronic resource] /] / Jacek Mulak and Zbigniew Gajek |
Autore | Mulak J |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New York ; ; Amsterdam, : Elsevier, 2000 |
Descrizione fisica | 1 online resource (319 p.) |
Disciplina |
530.14
538.43 538/.43 21 |
Altri autori (Persone) | GajekZbigniew |
Soggetto topico |
Complex compounds
Crystal field theory |
ISBN |
1-281-18640-6
9786611186401 0-08-053071-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; The Effective Crystal Field Potential; Copyright Page; Contents; Chapter 1. Introduction; Chapter 2. Parameterization of crystal field Hamiltonian; 2.1. Operators and parameters of the crystal field Hamiltonian; 2.2. Basic parameterizations; 2.3. Symmetry transformations of the operators; 2.4. The number of independent crystal field parameters; 2.5. Standardization of the crystal field Hamiltonian; 2.6. Final remark; Chapter 3. The effective crystal field potential. Chronological development of crystal field models
Chapter 4. Ionic complex or quasi-molecular cluster. Generalized product function4.1 Concept of the generalized product function; 4.2 The density functions and the transition density functions; 4.3 Model of the generalized product functions; 4.4 Crystal field effect in the product function model; Chapter 5. Point charge model (PCM); 5.1 PCM potential and its parameters; 5.2 Simple partial PCM potentials; 5.3 Extension of PCM-higher point multipole contribution; Chapter 6. One-configurational model with neglecting the non-orthogonality. The charge penetration and exchange effects 6.1 Classical electrostatic potential produced by the ligand charge distribution6.2 The charge penetration effect and the exchange interaction in the generalized product function model; 6.3 The weight of the penetration and exchange effects in the crystal field potential; 6.4 Calculation of the two-centre integrals; 6.5 Final remarks; Chapter 7. The exclusion model. One-configurational approach with regard to non-orthogonality of the wave functions; 7.1 Three types of the non-orthogonality 7.2 The renormalization of the open-shell Hamiltonian Ha owing to the non-orthogonality of the one-electron functions7.3 The contact-covalency-the main component of the crystal field potential; 7.4 The contact-shielding; 7.5 The contact-polarization; 7.6 Mechanisms of the contact-shielding and contact-polarization in terms of the exchange charge notion; Chapter 8. Covalency contribution, i.e. the charge transfer effect; 8.1 The one-electron excitations. Group product function for the excited state; 8.2 The renormalization of the open-shell Hamiltonian due to the covalency effect 8.3 Basic approximations8.4 The one-electron covalency potential Vcov; 8.5 The one-electron covalency potential V cov in the molecular-orbital formalism; 8.6 Remarks on the covalency mechanism; Chapter 9. Schielding and antishielding effect: contributions from closed electron shells; 9.1 Phenomenological quantification of the screening effect; 9.2 Microscopic model of the screening effect; 9.3 General expressions for the screening factors; 9.4 The screening factors; Chapter 10. Electrostatic crystal field contributions with consistent multipolar effects. Polarization 10.1 Expansion of the electrostatic potential of point charge system into the multipole series |
Record Nr. | UNINA-9910784533603321 |
Mulak J | ||
New York ; ; Amsterdam, : Elsevier, 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The effective crystal field potential / / Jacek Mulak and Zbigniew Gajek |
Autore | Mulak J |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New York ; ; Amsterdam, : Elsevier, 2000 |
Descrizione fisica | 1 online resource (319 p.) |
Disciplina | 538/.43 |
Altri autori (Persone) | GajekZbigniew |
Soggetto topico |
Complex compounds
Crystal field theory |
ISBN |
1-281-18640-6
9786611186401 0-08-053071-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; The Effective Crystal Field Potential; Copyright Page; Contents; Chapter 1. Introduction; Chapter 2. Parameterization of crystal field Hamiltonian; 2.1. Operators and parameters of the crystal field Hamiltonian; 2.2. Basic parameterizations; 2.3. Symmetry transformations of the operators; 2.4. The number of independent crystal field parameters; 2.5. Standardization of the crystal field Hamiltonian; 2.6. Final remark; Chapter 3. The effective crystal field potential. Chronological development of crystal field models
Chapter 4. Ionic complex or quasi-molecular cluster. Generalized product function4.1 Concept of the generalized product function; 4.2 The density functions and the transition density functions; 4.3 Model of the generalized product functions; 4.4 Crystal field effect in the product function model; Chapter 5. Point charge model (PCM); 5.1 PCM potential and its parameters; 5.2 Simple partial PCM potentials; 5.3 Extension of PCM-higher point multipole contribution; Chapter 6. One-configurational model with neglecting the non-orthogonality. The charge penetration and exchange effects 6.1 Classical electrostatic potential produced by the ligand charge distribution6.2 The charge penetration effect and the exchange interaction in the generalized product function model; 6.3 The weight of the penetration and exchange effects in the crystal field potential; 6.4 Calculation of the two-centre integrals; 6.5 Final remarks; Chapter 7. The exclusion model. One-configurational approach with regard to non-orthogonality of the wave functions; 7.1 Three types of the non-orthogonality 7.2 The renormalization of the open-shell Hamiltonian Ha owing to the non-orthogonality of the one-electron functions7.3 The contact-covalency-the main component of the crystal field potential; 7.4 The contact-shielding; 7.5 The contact-polarization; 7.6 Mechanisms of the contact-shielding and contact-polarization in terms of the exchange charge notion; Chapter 8. Covalency contribution, i.e. the charge transfer effect; 8.1 The one-electron excitations. Group product function for the excited state; 8.2 The renormalization of the open-shell Hamiltonian due to the covalency effect 8.3 Basic approximations8.4 The one-electron covalency potential Vcov; 8.5 The one-electron covalency potential V cov in the molecular-orbital formalism; 8.6 Remarks on the covalency mechanism; Chapter 9. Schielding and antishielding effect: contributions from closed electron shells; 9.1 Phenomenological quantification of the screening effect; 9.2 Microscopic model of the screening effect; 9.3 General expressions for the screening factors; 9.4 The screening factors; Chapter 10. Electrostatic crystal field contributions with consistent multipolar effects. Polarization 10.1 Expansion of the electrostatic potential of point charge system into the multipole series |
Record Nr. | UNINA-9910828693003321 |
Mulak J | ||
New York ; ; Amsterdam, : Elsevier, 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|