top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biorefinery production technologies for chemicals and energy / / edited by Arindam Kuila and Mainak Mukhopadhyay
Biorefinery production technologies for chemicals and energy / / edited by Arindam Kuila and Mainak Mukhopadhyay
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2020
Descrizione fisica 1 online resource (407 pages)
Disciplina 660.6
Soggetto topico Bioreactors
Biomass
ISBN 1-119-59307-7
1-5231-3713-4
1-119-59306-9
1-119-59308-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555118703321
Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biorefinery production technologies for chemicals and energy / / edited by Arindam Kuila and Mainak Mukhopadhyay
Biorefinery production technologies for chemicals and energy / / edited by Arindam Kuila and Mainak Mukhopadhyay
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2020
Descrizione fisica 1 online resource (407 pages)
Disciplina 660.6
Soggetto topico Bioreactors
Biomass
ISBN 1-119-59307-7
1-5231-3713-4
1-119-59306-9
1-119-59308-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910821762603321
Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanomaterials in clinical therapeutics : synthesis and applications / / edited by Mainak Mukhopadhyay and Arindam Kuila
Nanomaterials in clinical therapeutics : synthesis and applications / / edited by Mainak Mukhopadhyay and Arindam Kuila
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2022]
Descrizione fisica 1 online resource (539 pages)
Disciplina 578
Soggetto topico Microscopy - Equipment and supplies
Nanostructured materials
ISBN 1-119-85774-0
1-119-85773-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830350903321
Hoboken, New Jersey : , : John Wiley & Sons, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of Biobutanol from Biomass
Production of Biobutanol from Biomass
Autore Kuila Arindam
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (376 pages)
Altri autori (Persone) MukhopadhyayMainak
ISBN 1-394-17288-5
1-394-17287-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biobutanol: An Overview -- 1.1 Introduction -- 1.2 General Aspects of Butanol Fermentation -- 1.2.1 Microbes That Produce Butanol, Both in Their Wild Type and After Genetic Modification -- 1.3 Clostridium Species That Produce ABE and Their Respective Metabolic Characteristics -- 1.4 Traits of the Molecularly Developed Strain and the ABE-Producing Clostridia -- 1.5 Substrate for ABE Fermentation in Research -- 1.6 Problem and Limitation of ABE Fermentation -- 1.7 The Development of Butanol from Designed and Modifying Biomass -- 1.8 Butanol Production Enhancement Using Advanced Technology -- 1.8.1 Batch Fermentation -- 1.8.2 Fed-Batch Fermentation -- 1.8.3 Continuous Fermentation -- 1.8.4 ABE Fermentation with Butanol Elimination -- 1.9 Utilizing Pre-Treatment and Saccharification to Produce Butanol from Lignocellulosic Biomass -- 1.10 Eliminating CCR to Produce Butanol -- 1.11 Butanol Production from Alternative Substrate to Sugar -- 1.12 Economics of Biobutanol -- 1.13 Future Prospects -- 1.14 Conclusion -- References -- Chapter 2 Recent Trends in the Pre-Treatment Process of Lignocellulosic Biomass for Enhanced Biofuel Production -- 2.1 Introduction -- 2.2 Composition of Lignocellulosic Biomass -- 2.3 Insight on the Pre-Treatment of LCB -- 2.4 Physical Pre-Treatment Method -- 2.4.1 Extrusion Method -- 2.4.2 Milling Method -- 2.4.3 Ultrasound Method -- 2.4.4 Microwave Method -- 2.5 Chemical Pre-Treatment Methods -- 2.5.1 Alkali Method -- 2.5.2 Acid Method -- 2.5.3 Organosolv Method -- 2.5.4 Ionic Liquids -- 2.5.5 Supercritical Fluids -- 2.5.6 Cosolvent Enhanced Lignocellulosic Fractionation -- 2.5.7 Low Temperature Steep Delignification -- 2.5.8 Ammonia Fiber Explosion -- 2.5.9 Deep Eutectic Solvents -- 2.6 Biological Pre-Treatment Methods.
2.6.1 Combined Biological Pre-Treatment -- 2.7 Future Prospects -- 2.8 Conclusion -- References -- Chapter 3 Current Status of Enzymatic Hydrolysis of Cellulosic Biomass -- 3.1 Introduction -- 3.2 Overview on Biofuels and Its Classification -- 3.2.1 First-Generation Biofuels -- 3.2.1.1 Advantage of First-Generation Biofuel -- 3.2.1.2 Limitation of First-Generation Biofuel -- 3.2.2 Second-Generation Lignocellulosic Biofuel -- 3.2.2.1 Different Types of Feedstocks for Second-Generation Biofuels -- 3.2.2.2 Advantages -- 3.2.2.3 Disadvantages -- 3.2.3 Third-Generation Biofuels -- 3.2.3.1 Advantages -- 3.2.3.2 Disadvantages -- 3.2.4 Fourth-Generation Biofuels -- 3.3 Pre-Treatment Methodologies for Hydrolysis of Lignocellulosic Biomass -- 3.3.1 Overview -- 3.3.2 Structural Analysis for Cellulosic Hydrolysis -- 3.3.3 Chemical Process for Pre-Treatment of Lignocellulose -- 3.3.3.1 Dilute Acid Pre-Treatment Process -- 3.3.4 Ionic Liquid as Pre-Treatment Agent -- 3.3.5 Pre-Treatment Process with Alkali Agents -- 3.3.6 Pre-Treatment with Ultrasonic Wave -- 3.4 Conclusion -- References -- Chapter 4 Present Status and Future Prospect of Butanol Fermentation -- 4.1 Introduction -- 4.2 Biobutanol Production -- 4.2.1 Microbes and Biobutanol Production -- 4.2.2 Substrate for Biobutanol Production -- 4.2.3 ABE Fermentation Process -- 4.2.4 Recovery of Biobutanol from Fermentation Broth -- 4.3 Perspectives -- 4.3.1 Substrate -- 4.3.2 Alleviate Carbon Catabolite Repression -- 4.3.3 Fermentation Improvement -- 4.3.4 Strain Development -- 4.3.5 Butanol Recovery -- 4.4 Conclusion -- References -- Chapter 5 Strategies of Strain Improvement for Butanol Fermentation -- 5.1 Introduction -- 5.2 Background -- 5.3 Microorganism -- 5.4 ABE Fermentation -- 5.4.1 The Obstacle in ABE Fermentation from Clostridium sp. -- 5.5 Selection of Biomass for the Production of Butanol.
5.6 Processes Improvement -- 5.7 Strain Improvement -- 5.7.1 Mutagenesis -- 5.7.1.1 Spontaneous Mutations -- 5.7.1.2 Induced Mutation -- 5.7.2 Strain Improvement Through Genetic Engineering -- 5.7.2.1 Recombinant DNA Technology -- 5.7.3 Genetic Engineering in Clostridial sp. for Improved Butanol Tolerance and Its Production -- 5.8 Production of Butanol From Bioethanol Through Chemical Processes -- 5.9 Advances in Genetically Engineered Microbes can Produce Biobutanol -- 5.10 Economics of Biobutanol Fermentation -- 5.11 Applications of Butanol -- 5.12 Butanol Advantages -- 5.13 Conclusion -- References -- Chapter 6 Process Integration and Intensification of Biobutanol Production -- 6.1 Introduction -- 6.2 Biobutanol -- 6.3 Biobutanol Production and Recovery -- 6.4 Process Intensification -- 6.4.1 PI Using Bioreactors -- 6.4.2 PI Using Membranes -- 6.4.3 PI Using Distillation -- 6.4.4 PI Using Liquid-Liquid Extraction -- 6.4.5 PI Using Adsorption -- 6.5 Process Integration -- 6.6 Conclusion -- References -- Chapter 7 Bioprocess Development and Bioreactor Designs for Biobutanol Production -- 7.1 Introduction -- 7.2 Steps in Biobutanol Production -- 7.3 Feedstock Selection -- 7.4 Microbial Strain Selection -- 7.5 Solvent Toxicity -- 7.6 Fermentation Technologies -- 7.7 Butanol Separation Techniques -- 7.8 Current Status and Economics -- 7.9 Concluding Remarks -- References -- Chapter 8 Advances in Microbial Metabolic Engineering for Increased Biobutanol Production -- 8.1 Introduction -- 8.2 Metabolic Engineering -- 8.2.1 n-Butanol -- 8.2.2 Isobutanol -- 8.3 Microorganisms for Butanol Production -- 8.3.1 The Clostridium Species -- 8.3.2 Escherichia coli Species -- 8.3.3 Other Bacteria -- 8.3.4 Biochemistry and Physiology -- 8.4 Metabolic Engineering of Clostridia -- 8.4.1 Genetic Tools for Clostridial Metabolic Engineering.
8.4.2 Optimum Selectivity Techniques for Butanol Production -- 8.5 Metabolic Engineering of Escherichia coli -- 8.6 Microbial Strain -- 8.7 Butanol Tolerance Improvement Through Genetic Engineering -- 8.8 Economic Viability -- 8.9 Problems and Limitations of ABE Fermentation -- 8.10 Future Outlook -- 8.11 Conclusion -- Acknowledgment -- References -- Chapter 9 Advanced CRISPR/Cas-Based Genome Editing Tools for Biobutanol Production -- 9.1 Introduction -- 9.2 Microorganisms as the Primary Producer of Biobutanol -- 9.3 Acetone-Butanol-Ethanol Producing Clostridia and Its Limitations -- 9.4 CRISPR-Cas System for Genome Editing -- 9.4.1 CRISPR-Cas Mediated Strategies for Genome Editing for Biobutanol Production in Microorganisms -- 9.4.1.1 Inhibition of Contentious Pathways -- 9.4.1.2 Redirection of the Flux of Metabolic Pathways for Better Solvent Production -- 9.4.1.3 Enhancement of Substrate Uptake -- 9.4.2 Improvement of the Biofuel Production -- 9.4.2.1 Off Targets in CRISPR-Cas System -- 9.4.2.2 Using sgRNA Design to Reduce Off Target Effects -- 9.4.2.3 Cas9 Modifications to Reduce Off-Target Effects -- 9.4.3 Efficient and Modified Biomass "Designed" for Biobutanol Production -- 9.5 Conclusion -- References -- Chapter 10 Role of Nanotechnology in Biomass-Based Biobutanol Production -- 10.1 Introduction -- 10.2 Nanoparticles for Producing of Biofuel -- 10.2.1 Magnetic Nanoparticles -- 10.2.2 Carbon Nanotubes -- 10.2.3 Graphene and Graphene-Derived Nanomaterial for Biofuel -- 10.2.4 Other Nanoparticles Applied in Heterogeneous Catalysis for Biofuel Production -- 10.3 Factors Affecting the Performance of Nanoparticles in Biofuel's Manufacturing -- 10.3.1 Synthesis Temperature -- 10.3.2 Synthesis Pressure -- 10.3.3 Synthesis pH -- 10.3.4 Size of Nanoparticles -- 10.4 Role of Nanomaterials in the Synthesis of Biofuels.
10.5 Utilization of Nanomaterials in Biofuel Production -- 10.5.1 Production of Biodiesel Using Nanocatalysts -- 10.5.2 Application of Nanomaterials for the Pre-Treatment of Lignocellulosic Biomass -- 10.5.3 Application of Nanomaterials in Synthesis of Cellulase and Stability -- 10.5.4 Application of Nanomaterials in the Hydrolysis of Lignocellulosic Biomass -- 10.5.5 Use of Nanotechnology in Bioethanol Production -- 10.5.6 Upgradation of Biofuel by Using Nanotechnology -- 10.5.7 Nanoparticle Use in Biorefineries -- 10.6 Nanotechnology in Bioethanol/Biobutanol Production -- 10.7 Future Perspective -- 10.8 Conclusion -- Acknowledgment -- References -- Chapter 11 Commercial Status and Future Scope of Biobutanol Production from Biomass -- 11.1 Introduction -- 11.2 Biobutanol-Its Brief Background Story -- 11.3 Commercial Aspect of Biobutanol Production from Biomass: Strength Analysis -- 11.4 Commercial Aspect of Biobutanol Production from Biomass: Weakness Analysis -- 11.5 Commercial Aspect of Biobutanol Production from Biomass: Opportunities and Challenges -- 11.6 Discussion: Evaluating the Future Prospects of Biobutanol -- Acknowledgment -- References -- Chapter 12 Current Status and Challenges of Biobutanol Production from Biomass -- 12.1 Introduction -- 12.2 Overview of Biofuel -- 12.2.1 History for Biofuel -- 12.3 Classification of Bioethanol -- 12.3.1 First-Generation of Ethanol -- 12.3.2 Second-Generation Bioethanol -- 12.3.3 Third-Generation Bioethanol -- 12.3.4 Fourth-Generation Bioethanol -- 12.4 Production of Biobutanol -- 12.4.1 Pre-Treatment Stages -- 12.4.2 Enzymatic Hydrolysis Stage -- 12.4.3 Fermentation Stage -- 12.4.4 Separation Stage -- 12.4.5 Production of Butanol from Genetically Improved Strains -- 12.5 Conclusion -- References -- Chapter 13 Biobutanol: A Promising Liquid Biofuel -- 13.1 Introduction.
13.1.1 First-Generation Biofuels.
Record Nr. UNINA-9910830094403321
Kuila Arindam  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of Biobutanol from Biomass
Production of Biobutanol from Biomass
Autore Kuila Arindam
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (376 pages)
Altri autori (Persone) MukhopadhyayMainak
Soggetto topico Butanol
Fermentation
ISBN 9781394172887
1394172885
9781394172870
1394172877
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biobutanol: An Overview -- 1.1 Introduction -- 1.2 General Aspects of Butanol Fermentation -- 1.2.1 Microbes That Produce Butanol, Both in Their Wild Type and After Genetic Modification -- 1.3 Clostridium Species That Produce ABE and Their Respective Metabolic Characteristics -- 1.4 Traits of the Molecularly Developed Strain and the ABE-Producing Clostridia -- 1.5 Substrate for ABE Fermentation in Research -- 1.6 Problem and Limitation of ABE Fermentation -- 1.7 The Development of Butanol from Designed and Modifying Biomass -- 1.8 Butanol Production Enhancement Using Advanced Technology -- 1.8.1 Batch Fermentation -- 1.8.2 Fed-Batch Fermentation -- 1.8.3 Continuous Fermentation -- 1.8.4 ABE Fermentation with Butanol Elimination -- 1.9 Utilizing Pre-Treatment and Saccharification to Produce Butanol from Lignocellulosic Biomass -- 1.10 Eliminating CCR to Produce Butanol -- 1.11 Butanol Production from Alternative Substrate to Sugar -- 1.12 Economics of Biobutanol -- 1.13 Future Prospects -- 1.14 Conclusion -- References -- Chapter 2 Recent Trends in the Pre-Treatment Process of Lignocellulosic Biomass for Enhanced Biofuel Production -- 2.1 Introduction -- 2.2 Composition of Lignocellulosic Biomass -- 2.3 Insight on the Pre-Treatment of LCB -- 2.4 Physical Pre-Treatment Method -- 2.4.1 Extrusion Method -- 2.4.2 Milling Method -- 2.4.3 Ultrasound Method -- 2.4.4 Microwave Method -- 2.5 Chemical Pre-Treatment Methods -- 2.5.1 Alkali Method -- 2.5.2 Acid Method -- 2.5.3 Organosolv Method -- 2.5.4 Ionic Liquids -- 2.5.5 Supercritical Fluids -- 2.5.6 Cosolvent Enhanced Lignocellulosic Fractionation -- 2.5.7 Low Temperature Steep Delignification -- 2.5.8 Ammonia Fiber Explosion -- 2.5.9 Deep Eutectic Solvents -- 2.6 Biological Pre-Treatment Methods.
2.6.1 Combined Biological Pre-Treatment -- 2.7 Future Prospects -- 2.8 Conclusion -- References -- Chapter 3 Current Status of Enzymatic Hydrolysis of Cellulosic Biomass -- 3.1 Introduction -- 3.2 Overview on Biofuels and Its Classification -- 3.2.1 First-Generation Biofuels -- 3.2.1.1 Advantage of First-Generation Biofuel -- 3.2.1.2 Limitation of First-Generation Biofuel -- 3.2.2 Second-Generation Lignocellulosic Biofuel -- 3.2.2.1 Different Types of Feedstocks for Second-Generation Biofuels -- 3.2.2.2 Advantages -- 3.2.2.3 Disadvantages -- 3.2.3 Third-Generation Biofuels -- 3.2.3.1 Advantages -- 3.2.3.2 Disadvantages -- 3.2.4 Fourth-Generation Biofuels -- 3.3 Pre-Treatment Methodologies for Hydrolysis of Lignocellulosic Biomass -- 3.3.1 Overview -- 3.3.2 Structural Analysis for Cellulosic Hydrolysis -- 3.3.3 Chemical Process for Pre-Treatment of Lignocellulose -- 3.3.3.1 Dilute Acid Pre-Treatment Process -- 3.3.4 Ionic Liquid as Pre-Treatment Agent -- 3.3.5 Pre-Treatment Process with Alkali Agents -- 3.3.6 Pre-Treatment with Ultrasonic Wave -- 3.4 Conclusion -- References -- Chapter 4 Present Status and Future Prospect of Butanol Fermentation -- 4.1 Introduction -- 4.2 Biobutanol Production -- 4.2.1 Microbes and Biobutanol Production -- 4.2.2 Substrate for Biobutanol Production -- 4.2.3 ABE Fermentation Process -- 4.2.4 Recovery of Biobutanol from Fermentation Broth -- 4.3 Perspectives -- 4.3.1 Substrate -- 4.3.2 Alleviate Carbon Catabolite Repression -- 4.3.3 Fermentation Improvement -- 4.3.4 Strain Development -- 4.3.5 Butanol Recovery -- 4.4 Conclusion -- References -- Chapter 5 Strategies of Strain Improvement for Butanol Fermentation -- 5.1 Introduction -- 5.2 Background -- 5.3 Microorganism -- 5.4 ABE Fermentation -- 5.4.1 The Obstacle in ABE Fermentation from Clostridium sp. -- 5.5 Selection of Biomass for the Production of Butanol.
5.6 Processes Improvement -- 5.7 Strain Improvement -- 5.7.1 Mutagenesis -- 5.7.1.1 Spontaneous Mutations -- 5.7.1.2 Induced Mutation -- 5.7.2 Strain Improvement Through Genetic Engineering -- 5.7.2.1 Recombinant DNA Technology -- 5.7.3 Genetic Engineering in Clostridial sp. for Improved Butanol Tolerance and Its Production -- 5.8 Production of Butanol From Bioethanol Through Chemical Processes -- 5.9 Advances in Genetically Engineered Microbes can Produce Biobutanol -- 5.10 Economics of Biobutanol Fermentation -- 5.11 Applications of Butanol -- 5.12 Butanol Advantages -- 5.13 Conclusion -- References -- Chapter 6 Process Integration and Intensification of Biobutanol Production -- 6.1 Introduction -- 6.2 Biobutanol -- 6.3 Biobutanol Production and Recovery -- 6.4 Process Intensification -- 6.4.1 PI Using Bioreactors -- 6.4.2 PI Using Membranes -- 6.4.3 PI Using Distillation -- 6.4.4 PI Using Liquid-Liquid Extraction -- 6.4.5 PI Using Adsorption -- 6.5 Process Integration -- 6.6 Conclusion -- References -- Chapter 7 Bioprocess Development and Bioreactor Designs for Biobutanol Production -- 7.1 Introduction -- 7.2 Steps in Biobutanol Production -- 7.3 Feedstock Selection -- 7.4 Microbial Strain Selection -- 7.5 Solvent Toxicity -- 7.6 Fermentation Technologies -- 7.7 Butanol Separation Techniques -- 7.8 Current Status and Economics -- 7.9 Concluding Remarks -- References -- Chapter 8 Advances in Microbial Metabolic Engineering for Increased Biobutanol Production -- 8.1 Introduction -- 8.2 Metabolic Engineering -- 8.2.1 n-Butanol -- 8.2.2 Isobutanol -- 8.3 Microorganisms for Butanol Production -- 8.3.1 The Clostridium Species -- 8.3.2 Escherichia coli Species -- 8.3.3 Other Bacteria -- 8.3.4 Biochemistry and Physiology -- 8.4 Metabolic Engineering of Clostridia -- 8.4.1 Genetic Tools for Clostridial Metabolic Engineering.
8.4.2 Optimum Selectivity Techniques for Butanol Production -- 8.5 Metabolic Engineering of Escherichia coli -- 8.6 Microbial Strain -- 8.7 Butanol Tolerance Improvement Through Genetic Engineering -- 8.8 Economic Viability -- 8.9 Problems and Limitations of ABE Fermentation -- 8.10 Future Outlook -- 8.11 Conclusion -- Acknowledgment -- References -- Chapter 9 Advanced CRISPR/Cas-Based Genome Editing Tools for Biobutanol Production -- 9.1 Introduction -- 9.2 Microorganisms as the Primary Producer of Biobutanol -- 9.3 Acetone-Butanol-Ethanol Producing Clostridia and Its Limitations -- 9.4 CRISPR-Cas System for Genome Editing -- 9.4.1 CRISPR-Cas Mediated Strategies for Genome Editing for Biobutanol Production in Microorganisms -- 9.4.1.1 Inhibition of Contentious Pathways -- 9.4.1.2 Redirection of the Flux of Metabolic Pathways for Better Solvent Production -- 9.4.1.3 Enhancement of Substrate Uptake -- 9.4.2 Improvement of the Biofuel Production -- 9.4.2.1 Off Targets in CRISPR-Cas System -- 9.4.2.2 Using sgRNA Design to Reduce Off Target Effects -- 9.4.2.3 Cas9 Modifications to Reduce Off-Target Effects -- 9.4.3 Efficient and Modified Biomass "Designed" for Biobutanol Production -- 9.5 Conclusion -- References -- Chapter 10 Role of Nanotechnology in Biomass-Based Biobutanol Production -- 10.1 Introduction -- 10.2 Nanoparticles for Producing of Biofuel -- 10.2.1 Magnetic Nanoparticles -- 10.2.2 Carbon Nanotubes -- 10.2.3 Graphene and Graphene-Derived Nanomaterial for Biofuel -- 10.2.4 Other Nanoparticles Applied in Heterogeneous Catalysis for Biofuel Production -- 10.3 Factors Affecting the Performance of Nanoparticles in Biofuel's Manufacturing -- 10.3.1 Synthesis Temperature -- 10.3.2 Synthesis Pressure -- 10.3.3 Synthesis pH -- 10.3.4 Size of Nanoparticles -- 10.4 Role of Nanomaterials in the Synthesis of Biofuels.
10.5 Utilization of Nanomaterials in Biofuel Production -- 10.5.1 Production of Biodiesel Using Nanocatalysts -- 10.5.2 Application of Nanomaterials for the Pre-Treatment of Lignocellulosic Biomass -- 10.5.3 Application of Nanomaterials in Synthesis of Cellulase and Stability -- 10.5.4 Application of Nanomaterials in the Hydrolysis of Lignocellulosic Biomass -- 10.5.5 Use of Nanotechnology in Bioethanol Production -- 10.5.6 Upgradation of Biofuel by Using Nanotechnology -- 10.5.7 Nanoparticle Use in Biorefineries -- 10.6 Nanotechnology in Bioethanol/Biobutanol Production -- 10.7 Future Perspective -- 10.8 Conclusion -- Acknowledgment -- References -- Chapter 11 Commercial Status and Future Scope of Biobutanol Production from Biomass -- 11.1 Introduction -- 11.2 Biobutanol-Its Brief Background Story -- 11.3 Commercial Aspect of Biobutanol Production from Biomass: Strength Analysis -- 11.4 Commercial Aspect of Biobutanol Production from Biomass: Weakness Analysis -- 11.5 Commercial Aspect of Biobutanol Production from Biomass: Opportunities and Challenges -- 11.6 Discussion: Evaluating the Future Prospects of Biobutanol -- Acknowledgment -- References -- Chapter 12 Current Status and Challenges of Biobutanol Production from Biomass -- 12.1 Introduction -- 12.2 Overview of Biofuel -- 12.2.1 History for Biofuel -- 12.3 Classification of Bioethanol -- 12.3.1 First-Generation of Ethanol -- 12.3.2 Second-Generation Bioethanol -- 12.3.3 Third-Generation Bioethanol -- 12.3.4 Fourth-Generation Bioethanol -- 12.4 Production of Biobutanol -- 12.4.1 Pre-Treatment Stages -- 12.4.2 Enzymatic Hydrolysis Stage -- 12.4.3 Fermentation Stage -- 12.4.4 Separation Stage -- 12.4.5 Production of Butanol from Genetically Improved Strains -- 12.5 Conclusion -- References -- Chapter 13 Biobutanol: A Promising Liquid Biofuel -- 13.1 Introduction.
13.1.1 First-Generation Biofuels.
Record Nr. UNINA-9910877136803321
Kuila Arindam  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui