2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE) / / Subhas Mukhopadhyay [and three others]
| 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE) / / Subhas Mukhopadhyay [and three others] |
| Autore | Mukhopadhyay Subhas |
| Pubbl/distr/stampa | Piscataway, NJ : , : IEEE, , 2022 |
| Descrizione fisica | 1 online resource (various pagings) : illustrations |
| Disciplina | 629.8 |
| Soggetto topico | Automatic control |
| ISBN | 1-66545-153-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering |
| Record Nr. | UNISA-996575144603316 |
Mukhopadhyay Subhas
|
||
| Piscataway, NJ : , : IEEE, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Innovative Technologies and Services for Smart Cities / Subhas Mukhopadhyay, Tarikul Islam
| Innovative Technologies and Services for Smart Cities / Subhas Mukhopadhyay, Tarikul Islam |
| Autore | Mukhopadhyay Subhas |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (214 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
data mining algorithms
pressure sensors proactive content delivery Elman neural network cockroaches capacitive sensor renewable energy indoor comfort impedance measurement Internet of things (IoT) context awareness redundant capacity city behavior secondary traffic SDN ontology bi-reflector solar PV system (BRPVS) air quality ontology development assistive living sol-gel technique decision support system ambient assisted living LCC converter insect surveillance sensitivity wireless sensor node (WSN) unpowered load balancing wireless sensor network dynamic range solar anomaly detection location-based social networks real-time assessment porous alumina IoT building integrated photovoltaics (BIPV) carbon nanotubes six-port structure domestic environment reconfiguration half bridge smart mat cloud computing differentiated services reflection-based nanocomposite sensor ppm chemical sensors sensor systems and applications tensile testing WSN smart traps ontology-based application hotel room comfort |
| ISBN |
9783039211821
303921182X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367564503321 |
Mukhopadhyay Subhas
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Printed and Flexible Sensor Technology : Fabrication and Applications
| Printed and Flexible Sensor Technology : Fabrication and Applications |
| Autore | Mukhopadhyay Subhas |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (463 pages) |
| Altri autori (Persone) | NagAnindya |
| Collana | IOP Series in Sensors and Sensor Systems Series |
| Soggetto topico |
Flexible electronics
Printed electronics |
| ISBN |
9780750343107
0750343109 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Editor biographies -- Subhas Chandra Mukhopadhyay -- Anindya Nag -- List of contributors -- Chapter 1 Printed and flexible sensors: a review of products and techniques -- 1.1 Introduction -- 1.2 Major manufacturers -- 1.2.1 Interlink Electronics -- 1.2.2 Tekscan -- 1.2.3 PST Sensors -- 1.2.4 GSI Technologies -- 1.2.5 KWJ Engineering -- 1.2.6 Peratech Holdco -- 1.2.7 ISORG -- 1.2.8 Fujifilm -- 1.2.9 Canatu -- 1.2.10 PolyIC -- 1.2.11 MC10 -- 1.2.12 QUAD Industries -- 1.2.13 Terabee -- 1.3 Materials for printed and flexible sensors -- 1.4 Printing technologies -- 1.4.1 Thick-film technology -- 1.4.2 Thin film technology -- 1.4.3 Inkjet printing -- 1.4.4 Photolithography -- 1.4.5 Masked photolithography -- 1.4.6 Maskless photolithography -- 1.4.7 Screen printing -- 1.4.8 Sputtering -- 1.4.9 Direct laser writing -- 1.4.10 Direct dry printing of carbon nanotubes -- 1.4.11 Hybrid printed electronics -- 1.5 Conclusion -- Acknowledgement -- References -- Chapter 2 Printed flexible sensors for academic research -- 2.1 Introduction -- 2.2 Printed flexible sensors -- 2.2.1 Biomedical applications of printed flexible sensors -- 2.2.2 Industrial applications of printed flexible sensors -- 2.2.3 Environmental applications of printed flexible sensors -- 2.3 Conclusion and future work -- Acknowledgement -- References -- Chapter 3 The fabrication of printed flexible sensors: challenges and possible outcomes -- 3.1 Introduction -- 3.2 The fabrication of printed flexible sensors -- 3.2.1 Screen printing -- 3.2.2 Inkjet printing -- 3.2.3 3D printing -- 3.2.4 Laser ablation -- 3.2.5 Gravure printing -- 3.3 Challenges of current sensors -- 3.4 Conclusion -- Acknowledgement -- References -- Chapter 4 Advances in printable devices for biomedical applications -- 4.1 Introduction -- 4.2 Printable biosensors.
4.3 The fabrication process of printable sensors -- 4.3.1 Screen printing -- 4.3.2 3D printing -- 4.3.3 Inkjet printing -- 4.4 The application of printable biosensors in biomedicine -- 4.4.1 Application as disposable biosensors for point-of-care testing -- 4.4.2 Application as wearable and implantable sensing devices -- 4.5 Parameters of printable biosensing devices -- 4.5.1 Analytical characteristics of printable biosensors -- 4.5.2 Other parameters of printable biosensors -- 4.6 Summary and future outlook -- References -- Chapter 5 Laser induced graphene: advances in electro-biochemical sensing and energy applications -- 5.1 Introduction -- 5.2 Properties of graphene -- 5.3 The commercial synthesis of graphene -- 5.3.1 Bottom up approach -- 5.3.2 Chemical vapor deposition -- 5.3.3 Mechanical exfoliation -- 5.3.4 Liquid-phase exfoliation -- 5.3.5 Electrochemical exfoliation -- 5.4 Laser induced graphene (LIG) fabrication -- 5.4.1 Procedure -- 5.4.2 An LIG based microfluidic device -- 5.4.3 Chemical modification of LIG (composites) -- 5.4.4 Different carbon sources for LIG -- 5.5 Electrochemical and biosensing applications of LIG -- 5.5.1 LIG in electrochemical, biosensor, and immunosensor applications -- 5.5.2 Application of LIG as a liquid, gas, and pressure sensor -- 5.6 LIG in energy applications -- 5.6.1 Application of LIG as a supercapacitor and microsupercapacitor -- 5.6.2 Application of LIG in fuel cells and nanogenerators (energy harvesting) -- 5.6.3 Future outlook and conclusion -- References -- Chapter 6 Fabrication and applications of wearable microfluidic devices for point-of-care sampling, manipulation, and testing -- 6.1 Introduction -- 6.1.1 Point-of-care testing (POCT) -- 6.1.2 Wearable devices -- 6.1.3 The microfluidic lab-on-a-chip technique -- 6.1.4 The significance of wearable microfluidics for biomedical applications. 6.2 Materials and fabrication of wearable microfluidic devices -- 6.2.1 Substrate materials and sensing materials -- 6.2.2 Fabrication techniques -- 6.2.3 Characteristics of the sensor -- 6.3 Theories and designs -- 6.3.1 Wearable microfluidic devices for physical properties -- 6.3.2 Wearable microfluidic devices for body fluids -- 6.4 Applications -- 6.4.1 Wearable microfluidic devices for sweat -- 6.4.2 Wearable microfluidic devices for urine -- 6.4.3 Wearable microfluidic devices for saliva -- 6.4.4 Wearable microfluidic devices for drug delivery -- 6.5 Conclusions and outlook -- Acknowledgments -- References -- Chapter 7 Single-walled carbon nanotubes for flexible and printed electronics -- 7.1 Introduction -- 7.2 The preparation of SWNT networks and thin films -- 7.2.1 Growth, alignment, and purification of CVD-grown SWNTs -- 7.2.2 Deposition, alignment, and purification of solution-processed SWNTs -- 7.3 Applications of sc-SWNTs -- 7.4 Applications of m-SWNTs -- 7.4.1 Pressure and strain sensors -- 7.4.2 Biological and chemical sensors -- 7.4.3 Supercapacitors and solar cells -- 7.5 Conclusion and future prospects -- References -- Chapter 8 Flexible strain sensors using graphene and its composites -- 8.1 Introduction -- 8.2 Graphene-metal nanocomposites for flexible sensor applications -- 8.3 Pulse measurement using PDMS encapsulated rGO-Pd sensors -- 8.4 Graphene capacitive strain sensor -- 8.5 Graphene based flex sensor on textile -- 8.6 Summary and conclusions -- References -- Chapter 9 Screen printed electrochemical and impedance biosensors -- 9.1 Introduction -- 9.2 A fundamental understanding of screen printing technology -- 9.2.1 Electrochemical biosensors based on screen printed electrodes -- 9.2.2 Advantages of electrochemical biosensors based on screen printed electrodes -- 9.2.3 Impedance biosensors based on screen printed electrodes. 9.2.4 The advantages of impedance biosensors based on screen printed electrodes -- 9.2.5 Challenges associated with real sample analysis using screen printed electrode based biosensors -- 9.2.6 Future outlook and concluding remarks -- References -- Chapter 10 Cellulose paper for flexible electronics: design and technology -- 10.1 Introduction -- 10.2 Cellulose paper structure and fabrication -- 10.3 A basic capillary structure design on cellulose paper -- 10.4 The application of designs and processing technologies on cellulose paper for flexible electronics -- 10.5 Conclusion -- References -- Chapter 11 Graphene-based implantable electrodes for neural recording/stimulation -- 11.1 Introduction -- 11.2 Synthesis of the graphene sheet -- 11.2.1 Mechanical exfoliation of graphite -- 11.2.2 Chemical vapor deposition (CVD) -- 11.2.3 Transfer methods of graphene onto the target surface -- 11.3 Graphene characterization methods -- 11.3.1 Raman spectroscopy -- 11.3.2 FESEM and SEM -- 11.3.3 TEM and HRTEM -- 11.3.4 UV-vis spectroscopy -- 11.3.5 AFM -- 11.4 The chemically modified graphene electrode -- 11.5 Graphene-based microelectrode arrays -- 11.5.1 Material requirements for neural implants -- 11.5.2 Graphene-based microelectrodes for stimulation -- 11.5.3 Graphene-based microelectrodes for neural recording -- 11.6 Conclusion -- Funding information -- References -- Chapter 12 Screen printed electrode based sensor for biological and chemical species detection -- 12.1 Introduction -- 12.2 Screen printed electrode (SPE) fabrication -- 12.3 Theory and operation of an electrochemical sensor -- 12.4 The SPE based biosensor -- 12.4.1 Immunosensor -- 12.4.2 Immunoassay -- 12.4.3 The construction of an amperometric type immunosensor -- 12.4.4 Chemosensor -- 12.4.5 Substrate and electrode materials -- 12.4.6 Electrode surface modification. 12.5 Screen printed electrode fabrication -- 12.6 Electrochemical signal measurement -- 12.6.1 A basic potentiostat circuit of electrochemical signal transduction -- 12.6.2 Cyclic voltammetry -- 12.6.3 Linear sweep voltammetry -- 12.6.4 Pulse voltammetry -- 12.6.5 Stripping voltammetry -- 12.7 Basic characteristics of some electrochemical signals -- 12.7.1 Electrochemical cell and signal -- 12.7.2 The electrochemical response of different SPEs -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 3D printed enzymatic biofuel cells incorporated with graphene and modified graphite bioelectrodes: a comparative study -- 13.1 Introduction -- 13.2 Experimental details -- 13.2.1 Materials, reagents, and supplies -- 13.2.2 Preparation of chemicals -- 13.2.3 Characterization and fabrication equipment -- 13.2.4 3D printed bioelectrode fabrication and preparation -- 13.2.5 Preparation of pencil graphite bioelectrodes -- 13.2.6 Design and fabrication of a 3D printed microchannel -- 13.2.7 Integration of 3DPG and PGE based 3D printed EBFCs -- 13.2.8 Electrochemical analysis -- 13.3 Results and discussion -- 13.3.1 Morphological analysis -- 13.3.2 Optimization of fuel concentration -- 13.3.3 Bioanode characterization -- 13.3.4 Effect of the scan rate -- 13.3.5 Biocathode characterization -- 13.3.6 Electrochemical impedance measurements -- 13.3.7 The effect of flow rate -- 13.3.8 Power performance of the biofuel cell -- 13.3.9 Stability study -- 13.4 Conclusions -- Acknowledgement -- References -- Chapter 14 Development, simulation and characterization of a novel incontinence sensor system using 2D-printing technology with conductive polymer PEDOT:PSS -- 14.1 Introduction -- 14.2 Material characterization for the FEM calculation -- 14.2.1 Relative permittivity -- 14.2.2 Electrical conductivity -- 14.3 Experimental models -- 14.3.1 Analytic model. 14.3.2 Simulation model. |
| Record Nr. | UNINA-9911009380503321 |
Mukhopadhyay Subhas
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||