top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE) / / Subhas Mukhopadhyay [and three others]
2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE) / / Subhas Mukhopadhyay [and three others]
Autore Mukhopadhyay Subhas
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2022
Descrizione fisica 1 online resource (various pagings) : illustrations
Disciplina 629.8
Soggetto topico Automatic control
ISBN 1-66545-153-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering
Record Nr. UNISA-996575144603316
Mukhopadhyay Subhas  
Piscataway, NJ : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Innovative Technologies and Services for Smart Cities / Subhas Mukhopadhyay, Tarikul Islam
Innovative Technologies and Services for Smart Cities / Subhas Mukhopadhyay, Tarikul Islam
Autore Mukhopadhyay Subhas
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (214 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato data mining algorithms
pressure sensors
proactive content delivery
Elman neural network
cockroaches
capacitive sensor
renewable energy
indoor comfort
impedance measurement
Internet of things (IoT)
context awareness
redundant capacity
city behavior
secondary traffic
SDN
ontology
bi-reflector solar PV system (BRPVS)
air quality
ontology development
assistive living
sol-gel technique
decision support system
ambient assisted living
LCC converter
insect surveillance
sensitivity
wireless sensor node (WSN)
unpowered
load balancing
wireless sensor network
dynamic range
solar
anomaly detection
location-based social networks
real-time assessment
porous alumina
IoT
building integrated photovoltaics (BIPV)
carbon nanotubes
six-port structure
domestic environment reconfiguration
half bridge
smart mat
cloud computing
differentiated services
reflection-based
nanocomposite sensor
ppm
chemical sensors
sensor systems and applications
tensile testing
WSN
smart traps
ontology-based application
hotel room comfort
ISBN 9783039211821
303921182X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367564503321
Mukhopadhyay Subhas  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Printed and Flexible Sensor Technology : Fabrication and Applications
Printed and Flexible Sensor Technology : Fabrication and Applications
Autore Mukhopadhyay Subhas
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2022
Descrizione fisica 1 online resource (463 pages)
Altri autori (Persone) NagAnindya
Collana IOP Series in Sensors and Sensor Systems Series
Soggetto topico Flexible electronics
Printed electronics
ISBN 9780750343107
0750343109
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Editor biographies -- Subhas Chandra Mukhopadhyay -- Anindya Nag -- List of contributors -- Chapter 1 Printed and flexible sensors: a review of products and techniques -- 1.1 Introduction -- 1.2 Major manufacturers -- 1.2.1 Interlink Electronics -- 1.2.2 Tekscan -- 1.2.3 PST Sensors -- 1.2.4 GSI Technologies -- 1.2.5 KWJ Engineering -- 1.2.6 Peratech Holdco -- 1.2.7 ISORG -- 1.2.8 Fujifilm -- 1.2.9 Canatu -- 1.2.10 PolyIC -- 1.2.11 MC10 -- 1.2.12 QUAD Industries -- 1.2.13 Terabee -- 1.3 Materials for printed and flexible sensors -- 1.4 Printing technologies -- 1.4.1 Thick-film technology -- 1.4.2 Thin film technology -- 1.4.3 Inkjet printing -- 1.4.4 Photolithography -- 1.4.5 Masked photolithography -- 1.4.6 Maskless photolithography -- 1.4.7 Screen printing -- 1.4.8 Sputtering -- 1.4.9 Direct laser writing -- 1.4.10 Direct dry printing of carbon nanotubes -- 1.4.11 Hybrid printed electronics -- 1.5 Conclusion -- Acknowledgement -- References -- Chapter 2 Printed flexible sensors for academic research -- 2.1 Introduction -- 2.2 Printed flexible sensors -- 2.2.1 Biomedical applications of printed flexible sensors -- 2.2.2 Industrial applications of printed flexible sensors -- 2.2.3 Environmental applications of printed flexible sensors -- 2.3 Conclusion and future work -- Acknowledgement -- References -- Chapter 3 The fabrication of printed flexible sensors: challenges and possible outcomes -- 3.1 Introduction -- 3.2 The fabrication of printed flexible sensors -- 3.2.1 Screen printing -- 3.2.2 Inkjet printing -- 3.2.3 3D printing -- 3.2.4 Laser ablation -- 3.2.5 Gravure printing -- 3.3 Challenges of current sensors -- 3.4 Conclusion -- Acknowledgement -- References -- Chapter 4 Advances in printable devices for biomedical applications -- 4.1 Introduction -- 4.2 Printable biosensors.
4.3 The fabrication process of printable sensors -- 4.3.1 Screen printing -- 4.3.2 3D printing -- 4.3.3 Inkjet printing -- 4.4 The application of printable biosensors in biomedicine -- 4.4.1 Application as disposable biosensors for point-of-care testing -- 4.4.2 Application as wearable and implantable sensing devices -- 4.5 Parameters of printable biosensing devices -- 4.5.1 Analytical characteristics of printable biosensors -- 4.5.2 Other parameters of printable biosensors -- 4.6 Summary and future outlook -- References -- Chapter 5 Laser induced graphene: advances in electro-biochemical sensing and energy applications -- 5.1 Introduction -- 5.2 Properties of graphene -- 5.3 The commercial synthesis of graphene -- 5.3.1 Bottom up approach -- 5.3.2 Chemical vapor deposition -- 5.3.3 Mechanical exfoliation -- 5.3.4 Liquid-phase exfoliation -- 5.3.5 Electrochemical exfoliation -- 5.4 Laser induced graphene (LIG) fabrication -- 5.4.1 Procedure -- 5.4.2 An LIG based microfluidic device -- 5.4.3 Chemical modification of LIG (composites) -- 5.4.4 Different carbon sources for LIG -- 5.5 Electrochemical and biosensing applications of LIG -- 5.5.1 LIG in electrochemical, biosensor, and immunosensor applications -- 5.5.2 Application of LIG as a liquid, gas, and pressure sensor -- 5.6 LIG in energy applications -- 5.6.1 Application of LIG as a supercapacitor and microsupercapacitor -- 5.6.2 Application of LIG in fuel cells and nanogenerators (energy harvesting) -- 5.6.3 Future outlook and conclusion -- References -- Chapter 6 Fabrication and applications of wearable microfluidic devices for point-of-care sampling, manipulation, and testing -- 6.1 Introduction -- 6.1.1 Point-of-care testing (POCT) -- 6.1.2 Wearable devices -- 6.1.3 The microfluidic lab-on-a-chip technique -- 6.1.4 The significance of wearable microfluidics for biomedical applications.
6.2 Materials and fabrication of wearable microfluidic devices -- 6.2.1 Substrate materials and sensing materials -- 6.2.2 Fabrication techniques -- 6.2.3 Characteristics of the sensor -- 6.3 Theories and designs -- 6.3.1 Wearable microfluidic devices for physical properties -- 6.3.2 Wearable microfluidic devices for body fluids -- 6.4 Applications -- 6.4.1 Wearable microfluidic devices for sweat -- 6.4.2 Wearable microfluidic devices for urine -- 6.4.3 Wearable microfluidic devices for saliva -- 6.4.4 Wearable microfluidic devices for drug delivery -- 6.5 Conclusions and outlook -- Acknowledgments -- References -- Chapter 7 Single-walled carbon nanotubes for flexible and printed electronics -- 7.1 Introduction -- 7.2 The preparation of SWNT networks and thin films -- 7.2.1 Growth, alignment, and purification of CVD-grown SWNTs -- 7.2.2 Deposition, alignment, and purification of solution-processed SWNTs -- 7.3 Applications of sc-SWNTs -- 7.4 Applications of m-SWNTs -- 7.4.1 Pressure and strain sensors -- 7.4.2 Biological and chemical sensors -- 7.4.3 Supercapacitors and solar cells -- 7.5 Conclusion and future prospects -- References -- Chapter 8 Flexible strain sensors using graphene and its composites -- 8.1 Introduction -- 8.2 Graphene-metal nanocomposites for flexible sensor applications -- 8.3 Pulse measurement using PDMS encapsulated rGO-Pd sensors -- 8.4 Graphene capacitive strain sensor -- 8.5 Graphene based flex sensor on textile -- 8.6 Summary and conclusions -- References -- Chapter 9 Screen printed electrochemical and impedance biosensors -- 9.1 Introduction -- 9.2 A fundamental understanding of screen printing technology -- 9.2.1 Electrochemical biosensors based on screen printed electrodes -- 9.2.2 Advantages of electrochemical biosensors based on screen printed electrodes -- 9.2.3 Impedance biosensors based on screen printed electrodes.
9.2.4 The advantages of impedance biosensors based on screen printed electrodes -- 9.2.5 Challenges associated with real sample analysis using screen printed electrode based biosensors -- 9.2.6 Future outlook and concluding remarks -- References -- Chapter 10 Cellulose paper for flexible electronics: design and technology -- 10.1 Introduction -- 10.2 Cellulose paper structure and fabrication -- 10.3 A basic capillary structure design on cellulose paper -- 10.4 The application of designs and processing technologies on cellulose paper for flexible electronics -- 10.5 Conclusion -- References -- Chapter 11 Graphene-based implantable electrodes for neural recording/stimulation -- 11.1 Introduction -- 11.2 Synthesis of the graphene sheet -- 11.2.1 Mechanical exfoliation of graphite -- 11.2.2 Chemical vapor deposition (CVD) -- 11.2.3 Transfer methods of graphene onto the target surface -- 11.3 Graphene characterization methods -- 11.3.1 Raman spectroscopy -- 11.3.2 FESEM and SEM -- 11.3.3 TEM and HRTEM -- 11.3.4 UV-vis spectroscopy -- 11.3.5 AFM -- 11.4 The chemically modified graphene electrode -- 11.5 Graphene-based microelectrode arrays -- 11.5.1 Material requirements for neural implants -- 11.5.2 Graphene-based microelectrodes for stimulation -- 11.5.3 Graphene-based microelectrodes for neural recording -- 11.6 Conclusion -- Funding information -- References -- Chapter 12 Screen printed electrode based sensor for biological and chemical species detection -- 12.1 Introduction -- 12.2 Screen printed electrode (SPE) fabrication -- 12.3 Theory and operation of an electrochemical sensor -- 12.4 The SPE based biosensor -- 12.4.1 Immunosensor -- 12.4.2 Immunoassay -- 12.4.3 The construction of an amperometric type immunosensor -- 12.4.4 Chemosensor -- 12.4.5 Substrate and electrode materials -- 12.4.6 Electrode surface modification.
12.5 Screen printed electrode fabrication -- 12.6 Electrochemical signal measurement -- 12.6.1 A basic potentiostat circuit of electrochemical signal transduction -- 12.6.2 Cyclic voltammetry -- 12.6.3 Linear sweep voltammetry -- 12.6.4 Pulse voltammetry -- 12.6.5 Stripping voltammetry -- 12.7 Basic characteristics of some electrochemical signals -- 12.7.1 Electrochemical cell and signal -- 12.7.2 The electrochemical response of different SPEs -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 3D printed enzymatic biofuel cells incorporated with graphene and modified graphite bioelectrodes: a comparative study -- 13.1 Introduction -- 13.2 Experimental details -- 13.2.1 Materials, reagents, and supplies -- 13.2.2 Preparation of chemicals -- 13.2.3 Characterization and fabrication equipment -- 13.2.4 3D printed bioelectrode fabrication and preparation -- 13.2.5 Preparation of pencil graphite bioelectrodes -- 13.2.6 Design and fabrication of a 3D printed microchannel -- 13.2.7 Integration of 3DPG and PGE based 3D printed EBFCs -- 13.2.8 Electrochemical analysis -- 13.3 Results and discussion -- 13.3.1 Morphological analysis -- 13.3.2 Optimization of fuel concentration -- 13.3.3 Bioanode characterization -- 13.3.4 Effect of the scan rate -- 13.3.5 Biocathode characterization -- 13.3.6 Electrochemical impedance measurements -- 13.3.7 The effect of flow rate -- 13.3.8 Power performance of the biofuel cell -- 13.3.9 Stability study -- 13.4 Conclusions -- Acknowledgement -- References -- Chapter 14 Development, simulation and characterization of a novel incontinence sensor system using 2D-printing technology with conductive polymer PEDOT:PSS -- 14.1 Introduction -- 14.2 Material characterization for the FEM calculation -- 14.2.1 Relative permittivity -- 14.2.2 Electrical conductivity -- 14.3 Experimental models -- 14.3.1 Analytic model.
14.3.2 Simulation model.
Record Nr. UNINA-9911009380503321
Mukhopadhyay Subhas  
Bristol : , : Institute of Physics Publishing, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui