The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl
| The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
| Autore | Guralnick Robert M. <1950-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
| Descrizione fisica | 1 online resource (96 p.) |
| Disciplina | 512/.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0371-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
| Record Nr. | UNINA-9910480222903321 |
Guralnick Robert M. <1950->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl
| The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
| Autore | Guralnick Robert M. <1950-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
| Descrizione fisica | 1 online resource (96 p.) |
| Disciplina | 512/.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
| ISBN | 1-4704-0371-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
| Record Nr. | UNINA-9910788849203321 |
Guralnick Robert M. <1950->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl
| The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Müller, Jan Saxl |
| Autore | Guralnick Robert M. <1950-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2003 |
| Descrizione fisica | 1 online resource (96 p.) |
| Disciplina | 512/.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Algebraic fields
Arithmetic functions Permutation groups Polynomials |
| ISBN | 1-4704-0371-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" ""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" |
| Record Nr. | UNINA-9910813657503321 |
Guralnick Robert M. <1950->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||