top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Green's Kernels and Meso-Scale Approximations in Perforated Domains [[electronic resource] /] / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves
Green's Kernels and Meso-Scale Approximations in Perforated Domains [[electronic resource] /] / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves
Autore Maz'ya Vladimir
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XVII, 258 p. 17 illus., 10 illus. in color.)
Disciplina 515.353
Collana Lecture Notes in Mathematics
Soggetto topico Partial differential equations
Approximation theory
Partial Differential Equations
Approximations and Expansions
ISBN 3-319-00357-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Green’s functions in singularly perturbed domains: Uniform asymptotic formulae for Green’s functions for the Laplacian in domains with small perforations -- Mixed and Neumann boundary conditions for domains with small holes and inclusions. Uniform asymptotics of Green’s kernels -- Green’s function for the Dirichlet boundary value problem in a domain with several inclusions -- Numerical simulations based on the asymptotic approximations -- Other examples of asymptotic approximations of Green’s functions in singularly perturbed domains -- Part II: Green’s tensors for vector elasticity in bodies with small defects: Green’s tensor for the Dirichlet boundary value problem in a domain with a single inclusion -- Green’s tensor in bodies with multiple rigid inclusions -- Green’s tensor for the mixed boundary value problem in a domain with a small hole -- Part III Meso-scale approximations. Asymptotic treatment of perforated domains without homogenization: Meso-scale approximations for solutions of Dirichlet problems -- Mixed boundary value problems in multiply-perforated domains.
Record Nr. UNISA-996466611503316
Maz'ya Vladimir  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Green's Kernels and Meso-Scale Approximations in Perforated Domains / / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves
Green's Kernels and Meso-Scale Approximations in Perforated Domains / / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves
Autore Maz'ya Vladimir
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XVII, 258 p. 17 illus., 10 illus. in color.)
Disciplina 515.353
Collana Lecture Notes in Mathematics
Soggetto topico Partial differential equations
Approximation theory
Partial Differential Equations
Approximations and Expansions
ISBN 3-319-00357-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Green’s functions in singularly perturbed domains: Uniform asymptotic formulae for Green’s functions for the Laplacian in domains with small perforations -- Mixed and Neumann boundary conditions for domains with small holes and inclusions. Uniform asymptotics of Green’s kernels -- Green’s function for the Dirichlet boundary value problem in a domain with several inclusions -- Numerical simulations based on the asymptotic approximations -- Other examples of asymptotic approximations of Green’s functions in singularly perturbed domains -- Part II: Green’s tensors for vector elasticity in bodies with small defects: Green’s tensor for the Dirichlet boundary value problem in a domain with a single inclusion -- Green’s tensor in bodies with multiple rigid inclusions -- Green’s tensor for the mixed boundary value problem in a domain with a small hole -- Part III Meso-scale approximations. Asymptotic treatment of perforated domains without homogenization: Meso-scale approximations for solutions of Dirichlet problems -- Mixed boundary value problems in multiply-perforated domains.
Record Nr. UNINA-9910733732503321
Maz'ya Vladimir  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui