Bioinspired Biomaterials : Advances in Tissue Engineering and Regenerative Medicine / / edited by Heung Jae Chun, Rui L. Reis, Antonella Motta, Gilson Khang |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 610.284 |
Collana | Advances in Experimental Medicine and Biology |
Soggetto topico |
Biomedical engineering
Regenerative medicine Tissue engineering Pharmaceutical technology Neurosciences Biochemical engineering Biomedical Engineering/Biotechnology Regenerative Medicine/Tissue Engineering Pharmaceutical Sciences/Technology Biochemical Engineering Materials biomèdics Enginyeria de teixits Medicina regenerativa |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-15-3258-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Novel Bioinspired Biomaterials for Regenerative Medicine -- Chapter 1. Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering -- Chapter 2. Application of Gellan Gum-based Scaffold for Regenerative Medicine -- Chapter 3. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin -- Part II. Bioinspired 3D Bioprinting Hydrogel for Regenerative Medicine -- Chapter 4. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting -- Chapter 5. 3D-Bioprinting of Tissue Models with Customized Bioinks -- Chapter 6. Visible Light-curable Hydrogel Systems for Tissue Engineering and Drug Delivery -- Part III. Regulation of Stem Cell Fate by Bioinspired Biomaterials -- Chapter 7. Scaffolds for Cartilage Regeneration: To Use or Not to Use -- Chapter 8. Bio-application of Inorganic Nanomaterials in Tissue Engineering -- Chapter 9. Directional Cell Migration Guide for Improved Tissue Regeneration -- Part IV. Cutting-Edge Enabling Technology for Regenerative Medicine -- Chapter 10. Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery -- Chapter 11. Application of Tissue Engineering and Regenerative Medicine in Maternal-fetal Medicine -- Chapter 12. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration -- Chapter 13. Protein-based Drug Delivery in Brain Tumor Therapy -- Chapter 14. Human Hair: Scaffold Materials for Regenerative Medicine. |
Record Nr. | UNINA-9910409687403321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomimicked Biomaterials : Advances in Tissue Engineering and Regenerative Medicine / / edited by Heung Jae Chun, Rui L. Reis, Antonella Motta, Gilson Khang |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (200 pages) |
Disciplina | 610.284 |
Collana | Advances in Experimental Medicine and Biology |
Soggetto topico |
Biomedical engineering
Regenerative medicine Tissue engineering Pharmaceutical technology Neurosciences Biochemical engineering Biomedical Engineering/Biotechnology Regenerative Medicine/Tissue Engineering Pharmaceutical Sciences/Technology Biochemical Engineering Medicina regenerativa Enginyeria biomèdica Teixit connectiu |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-15-3262-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Novel Biomimicked Biomaterials for Regenerative Medicine -- Chapter 1. Bone Regeneration using Duck’s Feet Derived Collagen Scaffold as an Alternative Collagen Source -- Chapter 2. Decellularized Extracellular Matrices for Tissue Engineering and Regeneration -- Part II. Novel Biomimicked Hydrogel for Regenerative Medicine -- Chapter 3. Injectable in situ-forming Hydrogels for Protein and Peptide Delivery -- Chapter 4. Alginate Hydrogels as 3D Cell Encapsulation Matrices for Tissue Engineering and Regenerative Medicine -- Chapter 5. Design of Advanced Polymeric Hydrogels for Tissue Regenerative Medicine: Oxygen-controllable Hydrogel Materials -- Chapter 6. Enhancing Osteochondral Tissue Regeneration of Gellan Gum by Incorporating Gallus Gallus var Domesticus Derived Demineralized Bone Particle -- Part III. Control of Stem Cell Fate by Biomaterials for Regenerative Medicine -- Chapter 7. The Development of Extracellular Vesicles-Integrated Biomaterials for Bone Regeneration -- Chapter 8. In vivo Evaluation of the Biocompatibility of Biomaterial Device -- Chapter 9. Cell Response to Materials for Biomedical Engineering -- Chapter 10. Regulation of Stem Cell Functions by Micro-patterned Structures -- Part IV. Nano-Intelligent Biocomposites for Regenerative Medicine -- Chapter 11. Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide -- Chapter 12.Recent Advances of Biphasic Calcium Phosphate Bioceramics for Bone Tissue Regeneration -- Chapter 13. Surface-modifying Polymers for Blood-Contacting Polymeric Biomaterials. |
Record Nr. | UNINA-9910409687303321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|