top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Autore Moskalets Michael V
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (297 p.)
Disciplina 530.13/8
Soggetto topico S-matrix theory
Transport theory
Soggetto genere / forma Electronic books.
ISBN 1-84816-835-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.4.6.1 Spectrum1.4.6.2 Circulating current; 2. Current noise; 2.1 Nature of a current noise; 2.1.1 Thermal noise; 2.1.2 Shot noise; 2.1.3 Combined noise; 2.2 Sample with continuous spectrum; 2.2.1 Current correlator; 2.2.2 Current correlator in the frequency domain; 2.2.2.1 Correlator for incoming currents; 2.2.2.2 Correlator for incoming and outgoing currents; 2.2.2.3 Correlator for outgoing currents; 2.2.3 Spectral noise power for energy-independent scattering; 2.2.4 Zero frequency noise power; 2.2.4.1 Noise power conservation law; 2.2.4.2 Sign rule for the noise power
2.2.4.3 Scatterer with two leads2.2.5 Fano factor; 3. Non-stationary scattering theory; 3.1 Schr dinger equation with a potential periodic in time; 3.1.1 Perturbation theory; 3.1.2 Floquet functions method; 3.1.3 Potential oscillating in time and uniform in space; 3.2 Floquet scattering matrix; 3.2.1 Floquet scattering matrix properties; 3.2.1.1 Unitarity; 3.2.1.2 Micro-reversibility; 3.3 Current operator; 3.3.1 Alternating current; 3.3.2 Direct current; 3.4 Adiabatic approximation for the Floquet scattering matrix; 3.4.1 Frozen scattering matrix; 3.4.2 Zeroth-order approximation
3.4.3 First-order approximation3.5 Beyond the adiabatic approximation; 3.5.1 Scattering matrix in mixed energy-time representation; 3.5.2 Dynamic point-like potential; 3.5.3 Dynamic double-barrier potential; 3.5.3.1 Adiabatic approximation; 3.5.4 Unitarity and the sum over trajectories; 3.5.5 Current and the sum over trajectories; 3.5.5.1 Temperature-independent contribution to generated current; 3.5.5.2 Contribution to generated current dependent on temperature; 3.5.5.3 Nature of two contributions to generated current; 4. Direct current generated by the dynamic scatterer
4.1 Steady particle flow4.1.1 Distribution function; 4.1.2 Adiabatic regime: Current linear in the pump frequency; 4.1.3 Current quadratic in the pump frequency; 4.2 Quantum pump effect; 4.2.1 Quasi-particle picture of direct current generation; 4.2.2 Interference mechanism of direct current generation; 4.3 Single-parameter adiabatic direct current generation; 5. Alternating current generated by the dynamic scatterer; 5.1 Adiabatic alternating current; 5.2 External AC bias; 5.2.1 Second quantization operators for incident and scattered electrons; 5.2.2 Alternating current
5.2.3 Direct current
Record Nr. UNINA-9910463733303321
Moskalets Michael V  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Autore Moskalets Michael V
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (297 p.)
Disciplina 530.13/8
Soggetto topico S-matrix theory
Transport theory
ISBN 1-84816-835-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.4.6.1 Spectrum1.4.6.2 Circulating current; 2. Current noise; 2.1 Nature of a current noise; 2.1.1 Thermal noise; 2.1.2 Shot noise; 2.1.3 Combined noise; 2.2 Sample with continuous spectrum; 2.2.1 Current correlator; 2.2.2 Current correlator in the frequency domain; 2.2.2.1 Correlator for incoming currents; 2.2.2.2 Correlator for incoming and outgoing currents; 2.2.2.3 Correlator for outgoing currents; 2.2.3 Spectral noise power for energy-independent scattering; 2.2.4 Zero frequency noise power; 2.2.4.1 Noise power conservation law; 2.2.4.2 Sign rule for the noise power
2.2.4.3 Scatterer with two leads2.2.5 Fano factor; 3. Non-stationary scattering theory; 3.1 Schr dinger equation with a potential periodic in time; 3.1.1 Perturbation theory; 3.1.2 Floquet functions method; 3.1.3 Potential oscillating in time and uniform in space; 3.2 Floquet scattering matrix; 3.2.1 Floquet scattering matrix properties; 3.2.1.1 Unitarity; 3.2.1.2 Micro-reversibility; 3.3 Current operator; 3.3.1 Alternating current; 3.3.2 Direct current; 3.4 Adiabatic approximation for the Floquet scattering matrix; 3.4.1 Frozen scattering matrix; 3.4.2 Zeroth-order approximation
3.4.3 First-order approximation3.5 Beyond the adiabatic approximation; 3.5.1 Scattering matrix in mixed energy-time representation; 3.5.2 Dynamic point-like potential; 3.5.3 Dynamic double-barrier potential; 3.5.3.1 Adiabatic approximation; 3.5.4 Unitarity and the sum over trajectories; 3.5.5 Current and the sum over trajectories; 3.5.5.1 Temperature-independent contribution to generated current; 3.5.5.2 Contribution to generated current dependent on temperature; 3.5.5.3 Nature of two contributions to generated current; 4. Direct current generated by the dynamic scatterer
4.1 Steady particle flow4.1.1 Distribution function; 4.1.2 Adiabatic regime: Current linear in the pump frequency; 4.1.3 Current quadratic in the pump frequency; 4.2 Quantum pump effect; 4.2.1 Quasi-particle picture of direct current generation; 4.2.2 Interference mechanism of direct current generation; 4.3 Single-parameter adiabatic direct current generation; 5. Alternating current generated by the dynamic scatterer; 5.1 Adiabatic alternating current; 5.2 External AC bias; 5.2.1 Second quantization operators for incident and scattered electrons; 5.2.2 Alternating current
5.2.3 Direct current
Record Nr. UNINA-9910788434903321
Moskalets Michael V  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Scattering matrix approach to non-stationary quantum transport [[electronic resource] /] / Michael V. Moskalets
Autore Moskalets Michael V
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (297 p.)
Disciplina 530.13/8
Soggetto topico S-matrix theory
Transport theory
ISBN 1-84816-835-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.4.6.1 Spectrum1.4.6.2 Circulating current; 2. Current noise; 2.1 Nature of a current noise; 2.1.1 Thermal noise; 2.1.2 Shot noise; 2.1.3 Combined noise; 2.2 Sample with continuous spectrum; 2.2.1 Current correlator; 2.2.2 Current correlator in the frequency domain; 2.2.2.1 Correlator for incoming currents; 2.2.2.2 Correlator for incoming and outgoing currents; 2.2.2.3 Correlator for outgoing currents; 2.2.3 Spectral noise power for energy-independent scattering; 2.2.4 Zero frequency noise power; 2.2.4.1 Noise power conservation law; 2.2.4.2 Sign rule for the noise power
2.2.4.3 Scatterer with two leads2.2.5 Fano factor; 3. Non-stationary scattering theory; 3.1 Schr dinger equation with a potential periodic in time; 3.1.1 Perturbation theory; 3.1.2 Floquet functions method; 3.1.3 Potential oscillating in time and uniform in space; 3.2 Floquet scattering matrix; 3.2.1 Floquet scattering matrix properties; 3.2.1.1 Unitarity; 3.2.1.2 Micro-reversibility; 3.3 Current operator; 3.3.1 Alternating current; 3.3.2 Direct current; 3.4 Adiabatic approximation for the Floquet scattering matrix; 3.4.1 Frozen scattering matrix; 3.4.2 Zeroth-order approximation
3.4.3 First-order approximation3.5 Beyond the adiabatic approximation; 3.5.1 Scattering matrix in mixed energy-time representation; 3.5.2 Dynamic point-like potential; 3.5.3 Dynamic double-barrier potential; 3.5.3.1 Adiabatic approximation; 3.5.4 Unitarity and the sum over trajectories; 3.5.5 Current and the sum over trajectories; 3.5.5.1 Temperature-independent contribution to generated current; 3.5.5.2 Contribution to generated current dependent on temperature; 3.5.5.3 Nature of two contributions to generated current; 4. Direct current generated by the dynamic scatterer
4.1 Steady particle flow4.1.1 Distribution function; 4.1.2 Adiabatic regime: Current linear in the pump frequency; 4.1.3 Current quadratic in the pump frequency; 4.2 Quantum pump effect; 4.2.1 Quasi-particle picture of direct current generation; 4.2.2 Interference mechanism of direct current generation; 4.3 Single-parameter adiabatic direct current generation; 5. Alternating current generated by the dynamic scatterer; 5.1 Adiabatic alternating current; 5.2 External AC bias; 5.2.1 Second quantization operators for incident and scattered electrons; 5.2.2 Alternating current
5.2.3 Direct current
Record Nr. UNINA-9910815622403321
Moskalets Michael V  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui