Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi
| Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi |
| Autore | Moshayedi, Nima |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xiii, 336 p. : ill. ; 24 cm |
| Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53D17 - Poisson manifolds; Poisson groupoids and algebroids [MSC 2020] 46L87 - Noncommutative differential geometry [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81T75 - Noncommutative geometry methods in quantum field theory [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 53D42 - Symplectic field theory; contact homology [MSC 2020] 18N70 - $\infty$-operads and higher algebra [MSC 2020] |
| Soggetto non controllato |
Batalin-Vilkovisky
Configuration spaces Deformation quantization Differential geometry Fedosov Quantization Feynman graphs Gauge Theory L-infinity Algebras Path Integral Quantization Poisson Sigma Model Poisson geometry Quantum Field Theory Symplectic geometry Toplogical Quantum Field Theory Weyl-Moyal Quantization |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0260770 |
Moshayedi, Nima
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi
| Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi |
| Autore | Moshayedi, Nima |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xiii, 336 p. : ill. ; 24 cm |
| Soggetto topico |
18N70 - $\infty$-operads and higher algebra [MSC 2020]
46L87 - Noncommutative differential geometry [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53D17 - Poisson manifolds; Poisson groupoids and algebroids [MSC 2020] 53D42 - Symplectic field theory; contact homology [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81T75 - Noncommutative geometry methods in quantum field theory [MSC 2020] |
| Soggetto non controllato |
Batalin-Vilkovisky
Configuration spaces Deformation quantization Differential geometry Fedosov Quantization Feynman graphs Gauge Theory L-infinity Algebras Path Integral Quantization Poisson Sigma Model Poisson geometry Quantum Field Theory Symplectic geometry Toplogical Quantum Field Theory Weyl-Moyal Quantization |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00260770 |
Moshayedi, Nima
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Quantum Field Theory and Functional Integrals : An Introduction to Feynman Path Integrals and the Foundations of Axiomatic Field Theory / Nima Moshayedi
| Quantum Field Theory and Functional Integrals : An Introduction to Feynman Path Integrals and the Foundations of Axiomatic Field Theory / Nima Moshayedi |
| Autore | Moshayedi, Nima |
| Pubbl/distr/stampa | Singapore, : Springer, 2023 |
| Descrizione fisica | x, 118 p. : ill. ; 24 cm |
| Soggetto topico |
46T12 - Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds [MSC 2020]
81-XX - Quantum theory [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81S40 - Path integrals in quantum mechanics [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81T18 - Feynman diagrams [MSC 2020] |
| Soggetto non controllato |
Constructive Quantum Field Theory
Path Integrals Quantization Quantum Field Theory Schrödinger equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00285814 |
Moshayedi, Nima
|
||
| Singapore, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||