Machine learning under resource constraints Fundamentals / / edited by Katharina Morik and Peter Marwedel |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2023] |
Descrizione fisica | 1 online resource (xiii, 491 pages) : illustrations (chiefly colour) |
Disciplina | 006.31 |
Collana | De Gruyter STEM |
Soggetto topico |
Machine learning
SCIENCE / Chemistry / General |
Soggetto non controllato |
Artificial Intelligence
Big Data and Machine Learning Cyber-physical systems Data mining for Ubiquitous System Software Embedded Systems and Machine Learning Highly Distributed Data ML on Small devices Machine learning for knowledge discovery Machine learning in high-energy physics Resource-Aware Machine Learning Resource-Constrained Data Analysis |
ISBN | 3-11-078594-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ; 1 Introduction / Katharina Morik, Jian-Jia Chen -- ; 1.1 Embedded Systems and Sustainability -- ; 1.2 The Energy Consumption of Machine Learning -- ; 1.3 Memory Demands of Machine Learning -- ; 1.4 Structure of this Book -- ; 2 Data Gathering and Resource Measuring -- ; 2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL / Christoph Borchert, Jochen Streicher, Alexander Lochmann,Olaf Spinczyk -- ; 2.2 PhyNetLab Test Bed / Mojtaba Masoudinejad, Markus Buschhoff -- ; 2.3 Zero-Power/Low-Power Sensing / Andres Gomez, Lars Suter, Simon Mayer -- ; 3 Streaming Data, Small Devices -- ; 3.1 Summary Extraction from Streams / Sebastian Buschjäger, Katharina Morik -- ; 3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data / Alexander Munteanu -- ; 4 Structured Data -- ; 4.1 Spatio-Temporal Random Fields / Nico Piatkowski, Katharina Morik -- ; 4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs / Nils Kriege, Christopher Morris -- ; 4.3 Deep Graph Representation Learning / Matthias Fey, Frank Weichert -- ; 4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory / Nico Bertram, Jonas Ellert, Johannes Fischer -- ; 4.5 Millions of Formulas / Lukas Pfahler -- ; 5 Cluster Analysis -- ; 5.1 Sparse Partitioning Around Medoids / Lars Lenssen, Erich Schubert -- ; 5.2 Clustering of Polygonal Curves and Time Series / Amer Krivošija -- ; 5.3 Data Aggregation for Hierarchical Clustering / Erich Schubert, Andreas Lang -- ; 5.4 Matrix Factorization with Binary Constraints / Sibylle Hess ; 6 Hardware-Aware Execution -- ; 6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks / Wayne Luk, Ce Guo -- ; 6.2 Processor-Specific Code Transformation / Henning Funke, Jens Teubner -- ; 6.3 Extreme Multicore Classification / Erik Schultheis, Rohit Babbar -- ; 6.4 Optimization of ML on Modern Multicore Systems / Helena Kotthaus, Peter Marwedel -- 7 Memory Awareness -- ; 7.1 Efficient Memory Footprint Reduction / Helena Kotthaus, Peter Marwedel -- ; 7.2 Machine Learning Based on Emerging Memories / Mikail Yayla, Sebastian Buschjäger, Hussam Amrouch -- ; 7.3 Cache-Friendly Execution of Tree Ensembles / Sebastian Buschjäger, Kuan-Hsun Chen -- ; 8 Communication Awareness -- ; 8.1 Timing-Predictable Learning and Multiprocessor Synchronization / Kuan-Hsun Chen, Junjie Shi -- ; 8.2 Communication Architecture for Heterogeneous Hardware / Henning Funke, Jens Teubner -- ; 9 Energy Awareness -- ; 9.1 Integer Exponential Families / Nico Piatkowski -- ; 9.2 Power Consumption Analysis and Uplink Transmission Power / Robert Falkenberg. |
Record Nr. | UNISA-996503570003316 |
Berlin ; ; Boston : , : De Gruyter, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine learning under resource constraints Fundamentals / / edited by Katharina Morik and Peter Marwedel |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2023] |
Descrizione fisica | 1 online resource (xiii, 491 pages) : illustrations (chiefly colour) |
Disciplina | 006.31 |
Collana | De Gruyter STEM |
Soggetto topico |
Machine learning
SCIENCE / Chemistry / General |
Soggetto non controllato |
Artificial Intelligence
Big Data and Machine Learning Cyber-physical systems Data mining for Ubiquitous System Software Embedded Systems and Machine Learning Highly Distributed Data ML on Small devices Machine learning for knowledge discovery Machine learning in high-energy physics Resource-Aware Machine Learning Resource-Constrained Data Analysis |
ISBN | 3-11-078594-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ; 1 Introduction / Katharina Morik, Jian-Jia Chen -- ; 1.1 Embedded Systems and Sustainability -- ; 1.2 The Energy Consumption of Machine Learning -- ; 1.3 Memory Demands of Machine Learning -- ; 1.4 Structure of this Book -- ; 2 Data Gathering and Resource Measuring -- ; 2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL / Christoph Borchert, Jochen Streicher, Alexander Lochmann,Olaf Spinczyk -- ; 2.2 PhyNetLab Test Bed / Mojtaba Masoudinejad, Markus Buschhoff -- ; 2.3 Zero-Power/Low-Power Sensing / Andres Gomez, Lars Suter, Simon Mayer -- ; 3 Streaming Data, Small Devices -- ; 3.1 Summary Extraction from Streams / Sebastian Buschjäger, Katharina Morik -- ; 3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data / Alexander Munteanu -- ; 4 Structured Data -- ; 4.1 Spatio-Temporal Random Fields / Nico Piatkowski, Katharina Morik -- ; 4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs / Nils Kriege, Christopher Morris -- ; 4.3 Deep Graph Representation Learning / Matthias Fey, Frank Weichert -- ; 4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory / Nico Bertram, Jonas Ellert, Johannes Fischer -- ; 4.5 Millions of Formulas / Lukas Pfahler -- ; 5 Cluster Analysis -- ; 5.1 Sparse Partitioning Around Medoids / Lars Lenssen, Erich Schubert -- ; 5.2 Clustering of Polygonal Curves and Time Series / Amer Krivošija -- ; 5.3 Data Aggregation for Hierarchical Clustering / Erich Schubert, Andreas Lang -- ; 5.4 Matrix Factorization with Binary Constraints / Sibylle Hess ; 6 Hardware-Aware Execution -- ; 6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks / Wayne Luk, Ce Guo -- ; 6.2 Processor-Specific Code Transformation / Henning Funke, Jens Teubner -- ; 6.3 Extreme Multicore Classification / Erik Schultheis, Rohit Babbar -- ; 6.4 Optimization of ML on Modern Multicore Systems / Helena Kotthaus, Peter Marwedel -- 7 Memory Awareness -- ; 7.1 Efficient Memory Footprint Reduction / Helena Kotthaus, Peter Marwedel -- ; 7.2 Machine Learning Based on Emerging Memories / Mikail Yayla, Sebastian Buschjäger, Hussam Amrouch -- ; 7.3 Cache-Friendly Execution of Tree Ensembles / Sebastian Buschjäger, Kuan-Hsun Chen -- ; 8 Communication Awareness -- ; 8.1 Timing-Predictable Learning and Multiprocessor Synchronization / Kuan-Hsun Chen, Junjie Shi -- ; 8.2 Communication Architecture for Heterogeneous Hardware / Henning Funke, Jens Teubner -- ; 9 Energy Awareness -- ; 9.1 Integer Exponential Families / Nico Piatkowski -- ; 9.2 Power Consumption Analysis and Uplink Transmission Power / Robert Falkenberg. |
Record Nr. | UNINA-9910774817103321 |
Berlin ; ; Boston : , : De Gruyter, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|