Vai al contenuto principale della pagina

Sentiment Analysis for Social Media



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Moreno Antonio Visualizza persona
Titolo: Sentiment Analysis for Social Media Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 online resource (152 p.)
Soggetto topico: History of engineering and technology
Soggetto non controllato: affect computing
big data-driven marketing
collaborative schemes of sentiment analysis and sentiment systems
convolutional neural network
cyber-aggression
deep learning
emotion analysis
emotion classification
gender classification
health insurance
hybrid vectorization
lexicon construction
machine learning
medical web forum
online review
opinion mining
provider networks
psychographic segmentation
racism
random forest
recommender system
review data mining
semantic networks
sentiment analysis
sentiment classification
sentiment lexicon
sentiment word analysis
sentiment-aware word embedding
social media
social networks
text feature representation
text mining
Twitter
user preference prediction
violence against women
violence based on sexual orientation
word association
Persona (resp. second.): IglesiasCarlos A
Sommario/riassunto: Sentiment analysis is a branch of natural language processing concerned with the study of the intensity of the emotions expressed in a piece of text. The automated analysis of the multitude of messages delivered through social media is one of the hottest research fields, both in academy and in industry, due to its extremely high potential applicability in many different domains. This Special Issue describes both technological contributions to the field, mostly based on deep learning techniques, and specific applications in areas like health insurance, gender classification, recommender systems, and cyber aggression detection.
Titolo autorizzato: Sentiment Analysis for Social Media  Visualizza cluster
ISBN: 3-03928-573-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910404092303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui