top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Autore Stankoviâc Radomir S.
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE Press, , c2005
Descrizione fisica 1 online resource (262 p.)
Disciplina 621.3822
621.38220151
Altri autori (Persone) MoragaClaudio
AstolaJaakko T
Soggetto topico Signal processing - Mathematics
Fourier analysis
Non-Abelian groups
ISBN 1-280-27793-9
9786610277933
0-471-74543-X
1-60119-376-9
0-471-74542-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2.
5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-HaarExpressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives. -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index.
Record Nr. UNISA-996212283503316
Stankoviâc Radomir S.  
Piscataway, New Jersey : , : IEEE Press, , c2005
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Autore Stankoviâc Radomir S.
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE Press, , c2005
Descrizione fisica 1 online resource (262 p.)
Disciplina 621.3822
621.38220151
Altri autori (Persone) MoragaClaudio
AstolaJaakko T
Soggetto topico Signal processing - Mathematics
Fourier analysis
Non-Abelian groups
ISBN 1-280-27793-9
9786610277933
0-471-74543-X
1-60119-376-9
0-471-74542-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2.
5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-HaarExpressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives. -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index.
Record Nr. UNINA-9910143559003321
Stankoviâc Radomir S.  
Piscataway, New Jersey : , : IEEE Press, , c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankoviâc, Claudio Moraga, Jaakko Astola
Autore Stankoviâc Radomir S.
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE Press, , c2005
Descrizione fisica 1 online resource (262 p.)
Disciplina 621.3822
621.38220151
Altri autori (Persone) MoragaClaudio
AstolaJaakko T
Soggetto topico Signal processing - Mathematics
Fourier analysis
Non-Abelian groups
ISBN 1-280-27793-9
9786610277933
0-471-74543-X
1-60119-376-9
0-471-74542-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2.
5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-HaarExpressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives. -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index.
Record Nr. UNINA-9910829976203321
Stankoviâc Radomir S.  
Piscataway, New Jersey : , : IEEE Press, , c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankovic, Claudio Moraga, Jaakko Astola
Fourier analysis on finite groups with applications in signal processing and system design / / Radomir S. Stankovic, Claudio Moraga, Jaakko Astola
Autore Stankovic Radomir S
Pubbl/distr/stampa Piscataway, NJ, : IEEE Press
Descrizione fisica 1 online resource (262 p.)
Disciplina 621.382/2
Altri autori (Persone) MoragaClaudio
AstolaJaakko
Soggetto topico Signal processing - Mathematics
Fourier analysis
Non-Abelian groups
ISBN 1-280-27793-9
9786610277933
0-471-74543-X
1-60119-376-9
0-471-74542-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2.
5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-HaarExpressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives. -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index.
Record Nr. UNINA-9910876824603321
Stankovic Radomir S  
Piscataway, NJ, : IEEE Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
On Fuzziness : A Homage to Lotfi A. Zadeh – Volume 1 / / edited by Rudolf Seising, Enric Trillas, Claudio Moraga, Settimo Termini
On Fuzziness : A Homage to Lotfi A. Zadeh – Volume 1 / / edited by Rudolf Seising, Enric Trillas, Claudio Moraga, Settimo Termini
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XXXVI, 431 p.)
Disciplina 511.322
Collana Studies in Fuzziness and Soft Computing
Soggetto topico Computational intelligence
Mathematical logic
Computational Intelligence
Mathematical Logic and Formal Languages
ISBN 3-642-35641-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910437894403321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui