top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mobile and wireless communications for IMT-advanced and beyond / / editors, Afif Osseiran, Jose F. Monserrat, Werner Mohr
Mobile and wireless communications for IMT-advanced and beyond / / editors, Afif Osseiran, Jose F. Monserrat, Werner Mohr
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , 2011
Descrizione fisica 1 online resource (326 p.)
Disciplina 621.382
Altri autori (Persone) OsseiranAfif
MonserratJose F
MohrWerner <1955->
Soggetto topico Wireless communication systems
ISBN 1-119-97643-X
1-283-24042-4
9786613240422
1-119-97642-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors xiii -- Preface xv -- Acknowledgements xvii -- List of Abbreviations xix -- List of Contributors xxv -- 1 Introduction 1 -- 1.1 Market and Technology Trends 1 -- 1.2 Technology Evolution 3 -- 1.3 Development of IMT-Advanced and Beyond 6 -- References 8 -- 2 Radio Resource Management 11 -- 2.1 Overview of Radio Resource Management 11 -- 2.2 Resource Allocation in IMT-Advanced Technologies 13 -- 2.2.1 Main IMT-Advanced Characteristics 13 -- 2.2.2 Scheduling 16 -- 2.2.3 Interference Management 16 -- 2.2.4 Carrier Aggregation 18 -- 2.2.5 MBMS Transmission 18 -- 2.3 Dynamic Resource Allocation 19 -- 2.3.1 Resource Allocation and Packet Scheduling Using Utility Theory 19 -- 2.3.2 Resource Allocation with Relays 22 -- 2.3.3 Multiuser Resource Allocation Maximizing the UE QoS 24 -- 2.3.4 Optimization Problems and Performance 26 -- 2.4 Interference Coordination in Mobile Networks 26 -- 2.4.1 Power Control 27 -- 2.4.2 Resource Partitioning 28 -- 2.4.3 MIMO Busy Burst for Interference Avoidance 33 -- 2.5 Efficient MBMS Transmission 35 -- 2.5.1 MBMS Transmission 36 -- 2.5.2 Performance Assessment 37 -- 2.6 Future Directions of RRM Techniques 39 -- References 40 -- 3 Carrier Aggregation 43 -- 3.1 Basic Concepts 43 -- 3.2 ITU-R Requirements and Implementation in Standards 45 -- 3.3 Evolution Towards Future Technologies 48 -- 3.3.1 Channel Coding 48 -- 3.3.2 Scheduling 51 -- 3.3.3 Channel Quality Indicator 53 -- 3.3.4 Additional Research Directions 54 -- 3.4 Cognitive Radio Enabling Dynamic/Opportunistic Carrier Aggregation 55 -- 3.4.1 Spectrum Sharing and Opportunistic Carrier Aggregation 56 -- 3.4.2 Spectrum Awareness 58 -- 3.4.3 Cognitive Component Carrier Identification, Selection and Mobility 59 -- 3.5 Implications for Signaling and Architecture 59 -- 3.6 Hardware and Legal Limitations 60 -- References 61 -- 4 Spectrum Sharing 63 -- 4.1 Introduction 63 -- 4.2 Literature Overview 64 -- 4.2.1 Spectrum Sharing from a Game Theoretic Perspective 66 -- 4.2.2 Femtocells 67.
4.3 Spectrum Sharing with Game Theory 68 -- 4.3.1 Noncooperative Case 68 -- 4.3.2 Hierarchical Case 69 -- 4.4 Spectrum Trading 70 -- 4.4.1 Revenue and Cost Function for the Offering Operator 73 -- 4.4.2 Numerical Results 74 -- 4.5 Femtocells and Opportunistic Spectrum Usage 75 -- 4.5.1 Femtocells and Standardization 77 -- 4.5.2 Self-Organized Femtocells 79 -- 4.5.3 Beacon-Based Femtocells 81 -- 4.5.4 Femtocells with Intercell Interference Coordination 82 -- 4.5.5 Femtocells with Game Theory 83 -- 4.6 Conclusion, Discussion and Future Research 84 -- 4.6.1 Future Research 85 -- References 86 -- 5 Multiuser MIMO Systems 89 -- 5.1 MIMO Fundamentals 89 -- 5.1.1 System Model 91 -- 5.1.2 Point-to-Point MIMO Communications 92 -- 5.1.3 Multiuser MIMO Communications 96 -- 5.1.4 MIMO with Interference 100 -- 5.2 MIMO in LTE-Advanced and 802.16m 101 -- 5.2.1 LTE-Advanced 102 -- 5.2.2 WiMAX Evolution 104 -- 5.3 Generic Linear Precoding with CSIT 104 -- 5.3.1 Transmitter / Receiver Design 105 -- 5.3.2 Transceiver Design with Interference Nulling 110 -- 5.4 CSI Acquisition for Multiuser MIMO 112 -- 5.4.1 Limited Feedback 112 -- 5.4.2 CSI Sounding 113 -- 5.5 Future Directions of MIMO Techniques 114 -- References 115 -- 6 Coordinated Multi Point (CoMP) Systems 121 -- 6.1 Overview of CoMP 121 -- 6.1.1 CoMP Types 122 -- 6.1.2 Architectures and Clustering 123 -- 6.1.3 Theoretical Performance Limits and Implementation Constraints 126 -- 6.2 CoMP in the Standardization Bodies 129 -- 6.2.1 Overview of CoMP Studies 129 -- 6.2.2 Design Choices for a CoMP Functionality 131 -- 6.3 Generic System Model for Downlink CoMP 133 -- 6.3.1 SINR for Linear Transmissions 133 -- 6.3.2 Compact Matricial Model 134 -- 6.4 Joint Processing Techniques 134 -- 6.4.1 State of the Art 135 -- 6.4.2 Potential of Joint Processing 136 -- 6.4.3 Dynamic Joint Processing 137 -- 6.4.4 Uplink Joint Processing 141 -- 6.5 Coordinated Beamforming and Scheduling Techniques 142 -- 6.5.1 State of the Art 142 -- 6.5.2 Decentralized Coordinated Beamforming 143.
6.5.3 Coordinated Scheduling via Worst Companion Reporting 145 -- 6.6 Practical Implementation of CoMP in a Trial Environment 147 -- 6.6.1 Setup and Scenarios 149 -- 6.6.2 Measurement Results 149 -- 6.7 Future Directions 151 -- References 152 -- 7 Relaying for IMT-Advanced 157 -- 7.1 An Overview of Relaying 157 -- 7.1.1 Relay Evolution 158 -- 7.1.2 Relaying Deployment Scenarios 159 -- 7.1.3 Relaying Protocol Strategies 160 -- 7.1.4 Half Duplex and Full Duplex Relaying 162 -- 7.1.5 Numerical Example 162 -- 7.2 Relaying in the Standard Bodies 164 -- 7.2.1 Relay Types in LTE-Advanced Rel-10 164 -- 7.2.2 Relay Nodes in IEEE 802.16m 166 -- 7.3 Comparison of Relaying and CoMP 166 -- 7.3.1 Protocols and Resource Management 167 -- 7.3.2 Simulation Results 169 -- 7.4 In-band RNs versus Femtocells 171 -- 7.5 Cooperative Relaying for Beyond IMT-Advanced 173 -- 7.6 Relaying for beyond IMT-Advanced 176 -- 7.6.1 Multihop RNs 176 -- 7.6.2 Mobile Relay 177 -- 7.6.3 Network Coding 177 -- References 177 -- 8 Network Coding in Wireless Communications 181 -- 8.1 An Overview of Network Coding 181 -- 8.1.1 Historical Background 182 -- 8.1.2 Types of Network Coding 183 -- 8.1.3 Applications of Network Coding 183 -- 8.2 Uplink Network Coding 188 -- 8.2.1 Detection Strategies 188 -- 8.2.2 User Grouping 190 -- 8.2.3 Relay Selection 191 -- 8.2.4 Performance 192 -- 8.2.5 Integration in IMT-Advanced and Beyond 194 -- 8.3 Nonbinary Network Coding 194 -- 8.3.1 Nonbinary NC based on UE Cooperation 195 -- 8.3.2 Nonbinary NC for Multiuser and Multirelay 196 -- 8.3.3 Performance 197 -- 8.3.4 Integration in IMT-Advanced and Beyond 198 -- 8.4 Network Coding for Broadcast and Multicast 199 -- 8.4.1 Efficient Broadcast Network Coding Scheme 200 -- 8.4.2 Performance 201 -- 8.5 Conclusions and Future Directions 202 -- References 203 -- 9 Device-to-Device Communication 207 -- 9.1 Introduction 207 -- 9.2 State of the Art 208 -- 9.2.1 In Standards 208 -- 9.2.2 In Literature 210 -- 9.3 Device-to-Device Communication as Underlay to Cellular Networks 211.
9.3.1 Session Setup 212 -- 9.3.2 D2D Transmit Power 214 -- 9.3.3 Multiantenna Techniques 215 -- 9.3.4 Radio Resource Management 220 -- 9.4 Future Directions 225 -- References 228 -- 10 The End-to-end Performance of LTE-Advanced 231 -- 10.1 IMT-Advanced Evaluation: ITU Process, Scenarios and Requirements 231 -- 10.1.1 ITU-R Process for IMT-Advanced 232 -- 10.1.2 Evaluation Scenarios 234 -- 10.1.3 Performance Requirements 235 -- 10.2 Short Introduction to LTE-Advanced Features 238 -- 10.2.1 The WINNER+ Evaluation Group Assessment Approach 238 -- 10.3 Performance of LTE-Advanced 239 -- 10.3.1 3GPP Self-evaluation 239 -- 10.3.2 Simulative Performance Assessment by WINNER+ 241 -- 10.3.3 LTE-Advanced Performance in the Rural Indian Open Area Scenario 243 -- 10.4 Channel Model Implementation and Calibration 243 -- 10.4.1 IMT-Advanced Channel Model 243 -- 10.4.2 Calibration of Large-Scale Parameters 246 -- 10.4.3 Calibration of Small-Scale Parameters 247 -- 10.5 Simulator Calibration 248 -- 10.6 Conclusion and Outlook on the IMT-Advanced Process 249 -- References 250 -- 11 Future Directions 251 -- 11.1 Radio Resource Allocation 252 -- 11.2 Heterogeneous Networks 252 -- 11.3 MIMO and CoMP 253 -- 11.4 Relaying and Network Coding 254 -- 11.5 Device-to-Device Communications 254 -- 11.6 Green and Energy Efficiency 255 -- References 256 -- Appendices 259 -- Appendix A Resource Allocation 261 -- A.1 Dynamic Resource Allocation 261 -- A.1.1 Utility Predictive Scheduler 261 -- A.1.2 Resource Allocation with Relays 261 -- A.2 Multiuser Resource Allocation 263 -- A.2.1 PHY/MAC Layer Model 263 -- A.2.2 APP Layer Model 263 -- A.2.3 Optimization Problem 264 -- A.2.4 Simulation Results 265 -- A.3 Busy Burst Extended to MIMO 266 -- A.4 Efficient MBMS Transmission 267 -- A.4.1 Service Operation 267 -- A.4.2 Frequency Division Multiplexing (FDM) Performance 268 -- Appendix B Spectrum Awareness 269 -- B.1 Spectrum Sensing 269 -- B.2 Geo-Location Databases 270 -- B.3 Beacon Signaling 270 -- Appendix C CoordinatedMultiPoint (CoMP) 271.
C.1 Joint Processing Methods 271 -- C.1.1 Partial Joint Processing 271 -- C.1.2 Dynamic Base Station Clustering 271 -- C.2 Coordinated Beamforming and Scheduling 273 -- C.2.1 Decentralized Coordinated Beamforming 273 -- C.2.2 Coordinated Scheduling via Worst Companion Reporting 276 -- C.3 Test-Bed: Distributed Realtime Implementation 276 -- Appendix D Network Coding 281 -- D.1 Nonbinary NC based on UE Cooperation 281 -- D.2 Multiuser and Multirelay Scenario 282 -- Appendix E LTE-Advanced Analytical Performance and Peak Spectral Efficiency 285 -- E.1 Analytical and Inspection Performance Assessment by WINNER+ 285 -- E.1.1 Analytical Evaluation 285 -- E.1.2 Inspection 286 -- E.2 Peak Spectral Efficiency Calculation 287 -- E.2.1 FDD Mode Downlink Direction 287 -- E.2.2 FDD Mode Uplink Direction 288 -- E.2.3 TDD Mode Downlink Direction 289 -- E.2.4 TDD Mode Uplink Direction 291 -- E.2.5 Comparison with Self-Evaluation 292 -- References 292 -- Index 295.
Record Nr. UNINA-9910139608203321
Chichester, West Sussex, U.K. : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mobile and wireless communications for IMT-advanced and beyond / / editors, Afif Osseiran, Jose F. Monserrat, Werner Mohr
Mobile and wireless communications for IMT-advanced and beyond / / editors, Afif Osseiran, Jose F. Monserrat, Werner Mohr
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , 2011
Descrizione fisica 1 online resource (326 p.)
Disciplina 621.382
Altri autori (Persone) OsseiranAfif
MonserratJose F
MohrWerner <1955->
Soggetto topico Wireless communication systems
ISBN 1-119-97643-X
1-283-24042-4
9786613240422
1-119-97642-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors xiii -- Preface xv -- Acknowledgements xvii -- List of Abbreviations xix -- List of Contributors xxv -- 1 Introduction 1 -- 1.1 Market and Technology Trends 1 -- 1.2 Technology Evolution 3 -- 1.3 Development of IMT-Advanced and Beyond 6 -- References 8 -- 2 Radio Resource Management 11 -- 2.1 Overview of Radio Resource Management 11 -- 2.2 Resource Allocation in IMT-Advanced Technologies 13 -- 2.2.1 Main IMT-Advanced Characteristics 13 -- 2.2.2 Scheduling 16 -- 2.2.3 Interference Management 16 -- 2.2.4 Carrier Aggregation 18 -- 2.2.5 MBMS Transmission 18 -- 2.3 Dynamic Resource Allocation 19 -- 2.3.1 Resource Allocation and Packet Scheduling Using Utility Theory 19 -- 2.3.2 Resource Allocation with Relays 22 -- 2.3.3 Multiuser Resource Allocation Maximizing the UE QoS 24 -- 2.3.4 Optimization Problems and Performance 26 -- 2.4 Interference Coordination in Mobile Networks 26 -- 2.4.1 Power Control 27 -- 2.4.2 Resource Partitioning 28 -- 2.4.3 MIMO Busy Burst for Interference Avoidance 33 -- 2.5 Efficient MBMS Transmission 35 -- 2.5.1 MBMS Transmission 36 -- 2.5.2 Performance Assessment 37 -- 2.6 Future Directions of RRM Techniques 39 -- References 40 -- 3 Carrier Aggregation 43 -- 3.1 Basic Concepts 43 -- 3.2 ITU-R Requirements and Implementation in Standards 45 -- 3.3 Evolution Towards Future Technologies 48 -- 3.3.1 Channel Coding 48 -- 3.3.2 Scheduling 51 -- 3.3.3 Channel Quality Indicator 53 -- 3.3.4 Additional Research Directions 54 -- 3.4 Cognitive Radio Enabling Dynamic/Opportunistic Carrier Aggregation 55 -- 3.4.1 Spectrum Sharing and Opportunistic Carrier Aggregation 56 -- 3.4.2 Spectrum Awareness 58 -- 3.4.3 Cognitive Component Carrier Identification, Selection and Mobility 59 -- 3.5 Implications for Signaling and Architecture 59 -- 3.6 Hardware and Legal Limitations 60 -- References 61 -- 4 Spectrum Sharing 63 -- 4.1 Introduction 63 -- 4.2 Literature Overview 64 -- 4.2.1 Spectrum Sharing from a Game Theoretic Perspective 66 -- 4.2.2 Femtocells 67.
4.3 Spectrum Sharing with Game Theory 68 -- 4.3.1 Noncooperative Case 68 -- 4.3.2 Hierarchical Case 69 -- 4.4 Spectrum Trading 70 -- 4.4.1 Revenue and Cost Function for the Offering Operator 73 -- 4.4.2 Numerical Results 74 -- 4.5 Femtocells and Opportunistic Spectrum Usage 75 -- 4.5.1 Femtocells and Standardization 77 -- 4.5.2 Self-Organized Femtocells 79 -- 4.5.3 Beacon-Based Femtocells 81 -- 4.5.4 Femtocells with Intercell Interference Coordination 82 -- 4.5.5 Femtocells with Game Theory 83 -- 4.6 Conclusion, Discussion and Future Research 84 -- 4.6.1 Future Research 85 -- References 86 -- 5 Multiuser MIMO Systems 89 -- 5.1 MIMO Fundamentals 89 -- 5.1.1 System Model 91 -- 5.1.2 Point-to-Point MIMO Communications 92 -- 5.1.3 Multiuser MIMO Communications 96 -- 5.1.4 MIMO with Interference 100 -- 5.2 MIMO in LTE-Advanced and 802.16m 101 -- 5.2.1 LTE-Advanced 102 -- 5.2.2 WiMAX Evolution 104 -- 5.3 Generic Linear Precoding with CSIT 104 -- 5.3.1 Transmitter / Receiver Design 105 -- 5.3.2 Transceiver Design with Interference Nulling 110 -- 5.4 CSI Acquisition for Multiuser MIMO 112 -- 5.4.1 Limited Feedback 112 -- 5.4.2 CSI Sounding 113 -- 5.5 Future Directions of MIMO Techniques 114 -- References 115 -- 6 Coordinated Multi Point (CoMP) Systems 121 -- 6.1 Overview of CoMP 121 -- 6.1.1 CoMP Types 122 -- 6.1.2 Architectures and Clustering 123 -- 6.1.3 Theoretical Performance Limits and Implementation Constraints 126 -- 6.2 CoMP in the Standardization Bodies 129 -- 6.2.1 Overview of CoMP Studies 129 -- 6.2.2 Design Choices for a CoMP Functionality 131 -- 6.3 Generic System Model for Downlink CoMP 133 -- 6.3.1 SINR for Linear Transmissions 133 -- 6.3.2 Compact Matricial Model 134 -- 6.4 Joint Processing Techniques 134 -- 6.4.1 State of the Art 135 -- 6.4.2 Potential of Joint Processing 136 -- 6.4.3 Dynamic Joint Processing 137 -- 6.4.4 Uplink Joint Processing 141 -- 6.5 Coordinated Beamforming and Scheduling Techniques 142 -- 6.5.1 State of the Art 142 -- 6.5.2 Decentralized Coordinated Beamforming 143.
6.5.3 Coordinated Scheduling via Worst Companion Reporting 145 -- 6.6 Practical Implementation of CoMP in a Trial Environment 147 -- 6.6.1 Setup and Scenarios 149 -- 6.6.2 Measurement Results 149 -- 6.7 Future Directions 151 -- References 152 -- 7 Relaying for IMT-Advanced 157 -- 7.1 An Overview of Relaying 157 -- 7.1.1 Relay Evolution 158 -- 7.1.2 Relaying Deployment Scenarios 159 -- 7.1.3 Relaying Protocol Strategies 160 -- 7.1.4 Half Duplex and Full Duplex Relaying 162 -- 7.1.5 Numerical Example 162 -- 7.2 Relaying in the Standard Bodies 164 -- 7.2.1 Relay Types in LTE-Advanced Rel-10 164 -- 7.2.2 Relay Nodes in IEEE 802.16m 166 -- 7.3 Comparison of Relaying and CoMP 166 -- 7.3.1 Protocols and Resource Management 167 -- 7.3.2 Simulation Results 169 -- 7.4 In-band RNs versus Femtocells 171 -- 7.5 Cooperative Relaying for Beyond IMT-Advanced 173 -- 7.6 Relaying for beyond IMT-Advanced 176 -- 7.6.1 Multihop RNs 176 -- 7.6.2 Mobile Relay 177 -- 7.6.3 Network Coding 177 -- References 177 -- 8 Network Coding in Wireless Communications 181 -- 8.1 An Overview of Network Coding 181 -- 8.1.1 Historical Background 182 -- 8.1.2 Types of Network Coding 183 -- 8.1.3 Applications of Network Coding 183 -- 8.2 Uplink Network Coding 188 -- 8.2.1 Detection Strategies 188 -- 8.2.2 User Grouping 190 -- 8.2.3 Relay Selection 191 -- 8.2.4 Performance 192 -- 8.2.5 Integration in IMT-Advanced and Beyond 194 -- 8.3 Nonbinary Network Coding 194 -- 8.3.1 Nonbinary NC based on UE Cooperation 195 -- 8.3.2 Nonbinary NC for Multiuser and Multirelay 196 -- 8.3.3 Performance 197 -- 8.3.4 Integration in IMT-Advanced and Beyond 198 -- 8.4 Network Coding for Broadcast and Multicast 199 -- 8.4.1 Efficient Broadcast Network Coding Scheme 200 -- 8.4.2 Performance 201 -- 8.5 Conclusions and Future Directions 202 -- References 203 -- 9 Device-to-Device Communication 207 -- 9.1 Introduction 207 -- 9.2 State of the Art 208 -- 9.2.1 In Standards 208 -- 9.2.2 In Literature 210 -- 9.3 Device-to-Device Communication as Underlay to Cellular Networks 211.
9.3.1 Session Setup 212 -- 9.3.2 D2D Transmit Power 214 -- 9.3.3 Multiantenna Techniques 215 -- 9.3.4 Radio Resource Management 220 -- 9.4 Future Directions 225 -- References 228 -- 10 The End-to-end Performance of LTE-Advanced 231 -- 10.1 IMT-Advanced Evaluation: ITU Process, Scenarios and Requirements 231 -- 10.1.1 ITU-R Process for IMT-Advanced 232 -- 10.1.2 Evaluation Scenarios 234 -- 10.1.3 Performance Requirements 235 -- 10.2 Short Introduction to LTE-Advanced Features 238 -- 10.2.1 The WINNER+ Evaluation Group Assessment Approach 238 -- 10.3 Performance of LTE-Advanced 239 -- 10.3.1 3GPP Self-evaluation 239 -- 10.3.2 Simulative Performance Assessment by WINNER+ 241 -- 10.3.3 LTE-Advanced Performance in the Rural Indian Open Area Scenario 243 -- 10.4 Channel Model Implementation and Calibration 243 -- 10.4.1 IMT-Advanced Channel Model 243 -- 10.4.2 Calibration of Large-Scale Parameters 246 -- 10.4.3 Calibration of Small-Scale Parameters 247 -- 10.5 Simulator Calibration 248 -- 10.6 Conclusion and Outlook on the IMT-Advanced Process 249 -- References 250 -- 11 Future Directions 251 -- 11.1 Radio Resource Allocation 252 -- 11.2 Heterogeneous Networks 252 -- 11.3 MIMO and CoMP 253 -- 11.4 Relaying and Network Coding 254 -- 11.5 Device-to-Device Communications 254 -- 11.6 Green and Energy Efficiency 255 -- References 256 -- Appendices 259 -- Appendix A Resource Allocation 261 -- A.1 Dynamic Resource Allocation 261 -- A.1.1 Utility Predictive Scheduler 261 -- A.1.2 Resource Allocation with Relays 261 -- A.2 Multiuser Resource Allocation 263 -- A.2.1 PHY/MAC Layer Model 263 -- A.2.2 APP Layer Model 263 -- A.2.3 Optimization Problem 264 -- A.2.4 Simulation Results 265 -- A.3 Busy Burst Extended to MIMO 266 -- A.4 Efficient MBMS Transmission 267 -- A.4.1 Service Operation 267 -- A.4.2 Frequency Division Multiplexing (FDM) Performance 268 -- Appendix B Spectrum Awareness 269 -- B.1 Spectrum Sensing 269 -- B.2 Geo-Location Databases 270 -- B.3 Beacon Signaling 270 -- Appendix C CoordinatedMultiPoint (CoMP) 271.
C.1 Joint Processing Methods 271 -- C.1.1 Partial Joint Processing 271 -- C.1.2 Dynamic Base Station Clustering 271 -- C.2 Coordinated Beamforming and Scheduling 273 -- C.2.1 Decentralized Coordinated Beamforming 273 -- C.2.2 Coordinated Scheduling via Worst Companion Reporting 276 -- C.3 Test-Bed: Distributed Realtime Implementation 276 -- Appendix D Network Coding 281 -- D.1 Nonbinary NC based on UE Cooperation 281 -- D.2 Multiuser and Multirelay Scenario 282 -- Appendix E LTE-Advanced Analytical Performance and Peak Spectral Efficiency 285 -- E.1 Analytical and Inspection Performance Assessment by WINNER+ 285 -- E.1.1 Analytical Evaluation 285 -- E.1.2 Inspection 286 -- E.2 Peak Spectral Efficiency Calculation 287 -- E.2.1 FDD Mode Downlink Direction 287 -- E.2.2 FDD Mode Uplink Direction 288 -- E.2.3 TDD Mode Downlink Direction 289 -- E.2.4 TDD Mode Uplink Direction 291 -- E.2.5 Comparison with Self-Evaluation 292 -- References 292 -- Index 295.
Record Nr. UNINA-9910815029603321
Chichester, West Sussex, U.K. : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui