Solid-state physics for electronics [[electronic resource] /] / André Moliton |
Autore | Moliton André |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (407 p.) |
Disciplina |
530.4/1
530.41 621.381 |
Collana | ISTE |
Soggetto topico |
Solid state physics
Electronics - Materials |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-62324-X
1-282-69023-X 9786612690235 0-470-61148-0 0-470-39412-9 |
Classificazione | 33.60 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Solid-State Physics for Electronics; Table of Contents; Foreword; Introduction; Chapter 1. Introduction: Representations of Electron-Lattice Bonds; 1.1. Introduction; 1.2. Quantum mechanics: some basics; 1.2.1. The wave equation in solids: from Maxwell's to Schrödinger's equation via the de Broglie hypothesis; 1.2.2. Form of progressive and stationary wave functions for an electron with known energy (E); 1.2.3. Important properties of linear operators; 1.3. Bonds in solids: a free electron as the zero order approximation for a weak bond; and strong bonds
1.3.1. The free electron: approximation to the zero order1.3.2. Weak bonds; 1.3.3. Strong bonds; 1.3.4. Choosing between approximations for weak and strong bonds; 1.4. Complementary material: basic evidence for the appearance of bands in solids; 1.4.1. Basic solutions for narrow potential wells; 1.4.2. Solutions for two neighboring narrow potential wells; Chapter 2. The Free Electron and State Density Functions; 2.1. Overview of the free electron; 2.1.1. The model; 2.1.2. Parameters to be determined: state density functions in k or energy spaces 2.6.2. Expression for the state density functions in k space2.6.3. Expression for the state density functions in energy space; 2.7. Problems; 2.7.1. Problem 1: the function Z(E) in 1D; 2.7.2. Problem 2: diffusion length at the metal-vacuum interface; 2.7.3. Problem 3: 2D media: state density function and the behavior of the Fermi energy as a function of temperature for a metallic state; 2.7.4. Problem 4: Fermi energy of a 3D conductor; 2.7.5. Problem 5: establishing the state density function via reasoning in moment or k spaces 2.7.6. Problem 6: general equations for the state density functions expressed in reciprocal (k) space or in energy space |
Record Nr. | UNINA-9910139495403321 |
Moliton André | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Solid-state physics for electronics [[electronic resource] /] / André Moliton |
Autore | Moliton André |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (407 p.) |
Disciplina |
530.4/1
530.41 621.381 |
Collana | ISTE |
Soggetto topico |
Solid state physics
Electronics - Materials |
ISBN |
1-118-62324-X
1-282-69023-X 9786612690235 0-470-61148-0 0-470-39412-9 |
Classificazione | 33.60 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Solid-State Physics for Electronics; Table of Contents; Foreword; Introduction; Chapter 1. Introduction: Representations of Electron-Lattice Bonds; 1.1. Introduction; 1.2. Quantum mechanics: some basics; 1.2.1. The wave equation in solids: from Maxwell's to Schrödinger's equation via the de Broglie hypothesis; 1.2.2. Form of progressive and stationary wave functions for an electron with known energy (E); 1.2.3. Important properties of linear operators; 1.3. Bonds in solids: a free electron as the zero order approximation for a weak bond; and strong bonds
1.3.1. The free electron: approximation to the zero order1.3.2. Weak bonds; 1.3.3. Strong bonds; 1.3.4. Choosing between approximations for weak and strong bonds; 1.4. Complementary material: basic evidence for the appearance of bands in solids; 1.4.1. Basic solutions for narrow potential wells; 1.4.2. Solutions for two neighboring narrow potential wells; Chapter 2. The Free Electron and State Density Functions; 2.1. Overview of the free electron; 2.1.1. The model; 2.1.2. Parameters to be determined: state density functions in k or energy spaces 2.6.2. Expression for the state density functions in k space2.6.3. Expression for the state density functions in energy space; 2.7. Problems; 2.7.1. Problem 1: the function Z(E) in 1D; 2.7.2. Problem 2: diffusion length at the metal-vacuum interface; 2.7.3. Problem 3: 2D media: state density function and the behavior of the Fermi energy as a function of temperature for a metallic state; 2.7.4. Problem 4: Fermi energy of a 3D conductor; 2.7.5. Problem 5: establishing the state density function via reasoning in moment or k spaces 2.7.6. Problem 6: general equations for the state density functions expressed in reciprocal (k) space or in energy space |
Record Nr. | UNINA-9910830983703321 |
Moliton André | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|