top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of Artificial Intelligence in COVID-19 / / edited by Sachi Nandan Mohanty, Shailendra K. Saxena, Suneeta Satpathy, Jyotir Moy Chatterjee
Applications of Artificial Intelligence in COVID-19 / / edited by Sachi Nandan Mohanty, Shailendra K. Saxena, Suneeta Satpathy, Jyotir Moy Chatterjee
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (593 pages)
Disciplina 610.285
Collana Medical Virology: From Pathogenesis to Disease Control
Soggetto topico Virology
Epidemiology
Artificial intelligence
Artificial Intelligence
COVID-19
Intel·ligència artificial en medicina
Soggetto genere / forma Llibres electrònics
ISBN 981-15-7317-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1.Comprehensive Claims of AI for Healthcare Applications-Coherence towards COVID-19 -- Chapter 2. Artificial Intelligence based systems for combating COVID-19 -- Chapter 3. Artificial intelligence mediated medical diagnosis of COVID-19 -- Chapter 4. AI combined with medical imaging enables rapid diagnosis for COVID-19 -- Chapter 5. Role of Artificial Intelligence in COVID-19 prediction based on Statistical Methods -- Chapter 6. Data Driven symptom Analysis and Location Prediction Model for Clinical Health Data Processing and Knowledgebase Development for COVID 19 -- Chapter 7. A decision support System using Rule based Expert System For COVID -19 Prediction and Diagnosis -- Chapter 8. A Predictive Mechanism to Intimate the Danger of Infection via nCOVID-19 through Unsupervised Learning -- Chapter 9. AI-enabled prognosis technologies for SARS Co-2. Chapter 10. Intelligent agent Based Case Base Reasoning Systems Build Knowledge Representation in COVID-19 analysis of Recovery, Infectious Patients -- Chapter 11. Epidemic Analysis of COVID 19 Using Machine Learning -- Chapter 12. Machine learning application in COVID-19 drug development -- Chapter 13. COVID 19 Epidemic Analysis Using Linear and Polynomial Regression Approach -- Chapter 14. Prediction & Analysis of outbreak of COVID-19 Pandemic Using Machine Learning -- Chapter 15. Predictive Risk Analysis by using Machine Learning during Covid-19 -- Chapter 16. Analysis and Validation of Risk Prediction by Stochastic Gradient Boosting Along With Recursive Feature Elimination for COVID-19 -- Chapter 17. Artificial intelligence in mental healthcare during COVID-19 pandemic -- Chapter 18. Effect of Covid-19 on Autism Spectrum Disorder: Prognosis, diagnosis and therapeutics based On AI -- Chapter 19. Use of mobile phone apps for contact tracing to control the COVID-19 pandemic: A Literature Review -- Chapter 20. Role of IoT and Social Networking in Mental Healthcare of Transgender Community in Covid-19 Pandemic -- Chapter 21. TECHNOLOGY ACCEPTANCE AND USE OF IOT DURING COVID 19 PANDEMIC-CASE STUDY OF HEALTH SECTOR IN INDIA. Chapter 22. Artificial Intelligence – The Strategies used in COVID-19 for Diagnosis -- Chapter 23. Impact of Isolation and Quarantine on Covid-19 Patients and Potential Role of Technology in Mitigation -- Chapter 24. Impact of loneliness and Quarantine on COVID-19 patients with artificial intelligence applications -- Chapter 25. Can Technology fight the loneliness Lockdown: A study of factors Affecting Loneliness in NCR during COVID 19 -- Chapter 26. Psycho-economic Impact of Obligatory Job Switching during Covid-19 Pandemic: A Study of Hawkers in Bhubaneswar (India) -- Chapter 27. AI’s Role in Essential Commodities during a Pandemic Situation -- Chapter 28.Impact of COVID-19 on Manufacturing and Operational Ecosystem in India -- Chapter 29. Impact of Repatriated Migrants on the Production Possibility of Agricultural Sector owing to Covid: A Study on the basis of Inferential Statistics -- Chapter 30. Nicotine in Covid-19: Friend or Foe”;? -- Chapter 31. Artificial Intelligence in Covid’19: Application and Legal Conundrums.
Record Nr. UNINA-9910502987803321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Computing for Digital Forensic Investigations [[electronic resource]]
Big Data Analytics and Computing for Digital Forensic Investigations [[electronic resource]]
Pubbl/distr/stampa Milton, : CRC Press LLC, 2020
Descrizione fisica 1 online resource (235 pages) : illustrations
Disciplina 363.25968
Altri autori (Persone) SatpathySuneeta
MohantySachi Nandan
Soggetto topico Computer crimes - Investigation
ISBN 1-00-302474-2
1-000-04503-X
1-000-04505-6
1-003-02474-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794188703321
Milton, : CRC Press LLC, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Computing for Digital Forensic Investigations
Big Data Analytics and Computing for Digital Forensic Investigations
Edizione [1st ed.]
Pubbl/distr/stampa Milton, : CRC Press LLC, 2020
Descrizione fisica 1 online resource (235 pages) : illustrations
Disciplina 363.25968
005.7
Altri autori (Persone) SatpathySuneeta
MohantySachi Nandan
Soggetto topico Computer crimes - Investigation
ISBN 1-00-302474-2
1-000-04503-X
1-000-04505-6
1-003-02474-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Chapter 1 Introduction to Digital Forensics -- 1.1 Digital Forensics Overview -- 1.1.1 Definitions of Digital Forensics -- 1.1.2 The 3A's of Digital Forensics Methodology -- 1.1.3 The History of Digital Forensics -- 1.1.4 The Objectives of Digital Forensics -- 1.2 Digital Evidence -- 1.2.1 Active Data -- 1.2.2 Archival Data -- 1.2.3 Latent Data -- 1.2.4 Residual Data -- 1.3 Branches of Digital Forensics -- 1.3.1 Computer Forensics -- 1.3.2 Network Forensics -- 1.3.3 Software Forensics -- 1.3.4 Mobile Forensics -- 1.3.5 Memory Forensics -- 1.3.6 Malware Forensics -- 1.3.7 Database Forensics -- 1.3.8 Social Network Forensics -- 1.3.9 Anti-Forensics -- 1.3.10 Cloud Forensics -- 1.3.11 Bit Coin Forensics -- 1.3.12 Big Data Forensics -- 1.4 Phases of Forensic Investigation Process -- 1.4.1 Readiness -- 1.4.2 Identification -- 1.4.3 Collection -- 1.4.4 Analysis -- 1.4.5 Presentation -- 1.4.5.1 Chain of Custody -- 1.5 Conclusion -- References -- Chapter 2 Digital Forensics and Digital Investigation to Form a Suspension Bridge Flanked by Law Enforcement, Prosecution, and Examination of Computer Frauds and Cybercrime -- 2.1 Forensic Science and Digital Forensics -- 2.2 Digital Forensics -- 2.2.1 Digital Evidence -- 2.3 Segments of Digital Forensics -- 2.3.1 Preparation -- 2.3.1.1 An Investigative Plan -- 2.3.1.2 Training and Testing -- 2.3.1.3 Equipment -- 2.4 Compilation -- 2.4.1 Evidence Search and Collection -- 2.4.2 Data Recovery -- 2.4.3 Assessment -- 2.4.4 Post-Assessment -- 2.5 Stepladder of Digital Forensic Investigation Model -- 2.5.1 Recognition of Sources of Digital Evidence -- 2.5.2 Conservation of Evidentiary Digital Data -- 2.5.3 Mining of Evidentiary Data from Digital Media Sources.
2.5.4 Recording of Digital Evidence in Form of Report -- 2.6 Disciplines of Digital Forensics -- 2.6.1 Computer Forensics -- 2.6.2 Network Forensics -- 2.6.3 Software Forensics -- 2.7 Digital Crime Investigative Tools and Its Overview -- 2.7.1 EnCase Toolkit -- 2.7.2 Forensic Toolkit -- 2.7.3 SafeBack Toolkit -- 2.7.4 Storage Media Archival Recovery Toolkit -- 2.8 Taxonomy of Digital Crime Investigative Tools -- 2.8.1 Functionalities of Digital Investigative Tool Can Be Grouped under -- 2.8.1.1 Replica of the Hard Drive -- 2.8.1.2 Investigational Analysis -- 2.8.1.3 Presentation -- 2.8.1.4 Documentary Reporting -- 2.9 Boundaries and Commendations of Digital Crime Investigative Tools -- 2.10 Conclusion -- References -- Chapter 3 Big Data Challenges and Hype Digital Forensic: A Review in Health Care Management -- 3.1 Introduction -- 3.2 Big Data for Health Care -- 3.3 Big Data for Health Care Strategy Making -- 3.3.1 Pattern Developments -- 3.3.2 Evaluation and Interpretation -- 3.3.3 Result and Usage -- 3.4 Opportunity Generation and Big Data in Health Care Sector -- 3.4.1 Value Creation -- 3.5 Big Data and Health Care Sector Is Meeting Number of Challenges -- 3.5.1 Volume -- 3.5.2 Variety -- 3.5.3 Velocity and Variety -- 3.5.4 Data Findings -- 3.5.5 Privacy -- 3.6 Digitalized Big Data and Health Care Issues -- 3.6.1 Effective Communication Safely Data Storage -- 3.6.2 Availability of Data for General People -- 3.6.3 Logical Data -- 3.6.4 Effective Communication of Health Care Data -- 3.6.5 Data Capturing -- 3.6.5.1 Alignment of Data Sources -- 3.6.5.2 Algorithm of Data for Suitable Analysis -- 3.6.6 Understanding the Output and Accessibility towards the End Users -- 3.6.6.1 Privacy and Secrecy -- 3.6.6.2 Governance and Ethical Standards -- 3.6.6.3 Proper Audit -- 3.7 Precautionary Attempt for Future Big Data Health Care -- 3.7.1 Data Secrecy.
3.7.2 Web-Based Health Care -- 3.7.3 Genetically and Chronic Disease -- 3.8 Forensic Science and Big Data -- 3.9 Types of Digital Forensics -- 3.9.1 Digital Image Forensics -- 3.9.2 Drawn Data for the Starting of a Process -- 3.9.3 Big Data Analysis -- 3.9.3.1 Definition -- 3.9.3.2 Interpretation -- 3.9.3.3 Big Data Framework -- 3.9.3.4 Forensic Tool Requirement for the Huge Data in Health Care -- 3.10 Digital Forensics Analysis Tools -- 3.10.1 AIR (Automated Image and Rest Store) -- 3.10.2 Autopsy -- 3.10.3 Window Forensic Tool Chart -- 3.10.4 Digital Evidence and Forensic Tool Kit -- 3.10.5 EnCase -- 3.10.6 Mail Examiner -- 3.10.7 FTK -- 3.10.8 Bulk Extractors -- 3.10.9 Pre-Discover Forensic -- 3.10.10 CAINE -- 3.10.11 Xplico -- 3.10.12 X-Ways Forensic -- 3.10.13 Bulk Extractor -- 3.10.14 Digital Forensics Framework -- 3.10.15 Oxygen Forensics -- 3.10.16 Internet Evidence Finder -- 3.11 Some Other Instruments for Big Data Challenge -- 3.11.1 MapReduce Technique -- 3.11.2 Decision Tree -- 3.11.3 Neural Networks -- 3.12 Conclusion -- References -- Chapter 4 Hadoop Internals and Big Data Evidence -- 4.1 Hadoop Internals -- 4.2 The Hadoop Architectures -- 4.2.1 The Components of Hadoop -- 4.3 The Hadoop Distributed File System -- 4.4 Data Analysis Tools -- 4.4.1 Hive -- 4.4.2 HBase -- 4.4.3 Pig -- 4.4.4 Scoop -- 4.4.5 Flume -- 4.5 Locating Sources of Evidence -- 4.5.1 The Data Collection -- 4.5.2 Structured and Unstructured Data -- 4.5.3 Data Collection Types -- 4.6 The Chain of Custody Documentation -- 4.7 Conclusion -- Bibliography -- Chapter 5 Security and Privacy in Big Data Access Controls -- 5.1 Introduction -- 5.1.1 Big Data Is Not Big? -- 5.2 Big Data Challenges to Information Security and Privacy -- 5.3 Addressing Big Data Security and Privacy Challenges: A Proposal -- 5.4 Data Integrity Is Not Data Security! -- 5.4.1 What Vs Why?.
5.4.2 Data Integrity: Process Vs State -- 5.4.3 Integrity Types -- 5.4.3.1 Physical Integrity -- 5.4.3.2 Logical Integrity -- 5.4.3.3 Entity Integrity -- 5.4.3.4 Referential Integrity -- 5.4.3.5 Domain Integrity -- 5.4.3.6 User-Defined Integrity -- 5.5 Infiltration Activities: Fraud Detection with Predictive Analytics -- 5.6 Case Study I: In a Secure Social Application -- 5.6.1 Overall System Architecture -- 5.6.2 Registration on the Platform -- 5.6.3 Sharing Content on the Platform -- 5.6.4 Accessing Content on the Platform -- 5.7 Case Study II -- 5.7.1 An Intelligent Intrusion Detection/Prevention System on a Software-Defined Network -- 5.7.2 The Code Reveals -- 5.7.3 Evaluation -- 5.8 Big Data Security: Future Directions -- 5.9 Final Recommendations -- References -- Chapter 6 Data Science and Big Data Analytics -- 6.1 Objective -- 6.2 Introduction -- 6.2.1 What Is Big Data? -- 6.2.2 What Is Data Science? -- 6.2.3 What Is Data Analytics? -- 6.2.3.1 Descriptive Analytics -- 6.2.3.2 Diagnostic Analytics -- 6.2.3.3 Predictive Analytics -- 6.2.3.4 Prescriptive Analytics -- 6.2.4 Data Analytics Process -- 6.2.4.1 Business Understanding -- 6.2.4.2 Data Exploration -- 6.2.4.3 Preprocessing -- 6.2.4.4 Modeling -- 6.2.4.5 Data Visualization -- 6.3 Techniques for Data Analytics -- 6.3.1 Techniques in Preprocessing Stage -- 6.3.1.1 Data Cleaning -- 6.3.1.2 Data Transformation -- 6.3.1.3 Dimensionality Reduction -- 6.3.2 Techniques in Modeling Stage -- 6.3.2.1 Regression -- 6.3.2.2 Classification -- 6.3.2.3 Clustering -- 6.3.2.4 Association Rules -- 6.3.2.5 Ensemble Learning -- 6.3.2.6 Deep Learning -- 6.3.2.7 Reinforcement Learning -- 6.3.2.8 Text Analysis -- 6.3.2.9 Cross-Validation -- 6.4 Big Data Processing Models and Frameworks -- 6.4.1 Map Reduce -- 6.4.2 Apache Frameworks -- 6.5 Summary -- References.
Chapter 7 Awareness of Problems and Defies with Big Data Involved in Network Security Management with Revised Data Fusion-Based Digital Investigation Model -- 7.1 Introduction -- 7.2 Big Data -- 7.2.1 Variety -- 7.2.2 Volume -- 7.2.3 Velocity -- 7.2.4 Veracity -- 7.2.5 Value -- 7.3 Big Data and Digital Forensics -- 7.4 Digital Forensic Investigation and Its Associated Problem Statements -- 7.5 Relevance of Data Fusion Application in Big Data Digital Forensics and Its Investigation -- 7.6 Data Fusion -- 7.6.1 The JDL Practical Data Fusion Procedural Model -- 7.7 Revised Data Fusion-Based Digital Investigation Model for Digital Forensic and Network Threat Management -- 7.7.1 Data Collection and Preprocessing -- 7.7.2 Look-Up Table -- 7.7.3 Low-Level Fusion -- 7.7.4 Data Estimation Phase -- 7.7.5 High-Level Fusion -- 7.7.6 Decision-Level Fusion -- 7.7.7 Forensic Logbook -- 7.7.8 User Interface -- 7.8 Practicability and Likelihood of Digital Investigation Model -- 7.9 Conclusion and Future Work -- References -- Chapter 8 Phishing Prevention Guidelines -- 8.1 Phishing -- 8.1.1 Why Phishing Works -- 8.1.2 Phishing in Enterprise -- 8.2 Phishing Prevention Guidelines -- 8.2.1 Cyber Awareness and Hygiene -- 8.2.2 Phishing Prevention on Ground Level -- 8.2.3 Phishing Precautionary Measures at Enterprise Environs -- 8.2.4 Sturdy and Meticulous Web Development Is Recommended -- 8.2.5 Suggestive Measures for other Cybercrime -- 8.3 Implementation of Phishing Prevention Guidelines -- 8.4 Validation of Phishing Prevention Guidelines -- 8.5 Summary -- References -- Chapter 9 Big Data Digital Forensic and Cybersecurity -- 9.1 Introduction -- 9.2 Computer Frauds and Cybercrime -- 9.2.1 Tools Used in Cybercrime -- 9.2.2 Cybercrime Statistics for 2018-2019 -- 9.3 Taxonomy -- 9.4 Information Warfare -- 9.4.1 The Basic Strategies in Information Warfare.
9.4.2 Various Forms of Information Warfare.
Record Nr. UNINA-9910975182203321
Milton, : CRC Press LLC, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cloud security : techniques and applications / / Sirisha Potluri, Katta Subba Rao, Sachi Nandan Mohanty, editors
Cloud security : techniques and applications / / Sirisha Potluri, Katta Subba Rao, Sachi Nandan Mohanty, editors
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2021]
Descrizione fisica 1 online resource (XX, 192 p.)
Disciplina 004.6782
Collana De Gruyter series on smart computing applications
Soggetto topico Cloud computing
Computer security
ISBN 3-11-073257-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgement -- Contents -- List of Abbreviations -- List of Contributors -- Cloud Security Concepts, Threats and Solutions: Artificial Intelligence Based Approach -- Addressing Security and Privacy in Cloud Computing: Blockchain as a Service -- Security and Privacy Preservation Model to Mitigate DDoS Attacks in Cloud -- A Secure Cloud Infrastructure towards Smart Healthcare: IoT Based Health Monitoring -- Internet of Cloud: Secure and Privacy Preserving Cloud Model with IoT Enabled Service -- Marketing analytics as a Service: Secure Cloud Based Automation Strategy -- Next Generation Cloud Security: State of the Art Machine Learning Model -- Secure Intelligent Framework for VANET: Cloud Based Transportation Model -- Cloud Manufacturing Service: A Secure and Protected Communication System -- Index
Record Nr. UNINA-9910554217703321
Berlin ; ; Boston : , : De Gruyter, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Creative Approaches Towards Development of Computing and Multidisciplinary IT Solutions for Society
Creative Approaches Towards Development of Computing and Multidisciplinary IT Solutions for Society
Autore Bijalwan Anchit
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (585 pages)
Disciplina 004
Altri autori (Persone) BennettRick
G. BJyotsna
MohantySachi Nandan
Soggetto topico Computer science
ISBN 9781394272303
1394272308
9781394272280
1394272286
9781394272297
1394272294
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Emerging Research in Next Generation Computing Like Cloud Computing, Cybersecurity, and Gaming -- Chapter 1 Deploying Virtual Desktop Infrastructure with Open-Source Platform for Higher Education -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Cloud Computing -- 1.2.2 Virtualization -- 1.3 VDI Deployment Using CloudStack as a Private Cloud -- 1.4 Deploy at Information Technology Laboratories -- 1.5 Conclusion -- References -- Chapter 2 Enhancing Intrusion Detection Effectiveness Through an Enhanced Hierarchical Communication Architecture -- 2.1 Introduction -- 2.2 Related Works -- 2.3 Proposed Model -- 2.4 Analysis -- 2.5 Conclusion -- References -- Chapter 3 Enhanced SDN Security Using Mobile Agent -- 3.1 Introduction -- 3.1.1 Introduction to SDN -- 3.1.2 SDN Compared to Conventional Networking -- 3.2 Network Security in SDN -- 3.2.1 Vulnerabilities in SDN -- 3.2.2 Threats on SDN -- 3.3 Enhanced SDN Network Security Using Mobile Agent -- 3.3.1 Cloud Network Management Mobile Agent (CNMMA) Architecture Model -- 3.3.2 Mobile Agent Platform (MAP) -- 3.3.3 Network Management Mobile Agent -- 3.3.4 Mobile Agent Distributed Intrusion Detection System Framework (MA-DIDS) -- 3.3.4.1 IDS-Control Center -- 3.3.4.2 Mobile Agent SDN Control App -- 3.3.5 SDN Network Simulator -- 3.4 Conclusions -- References -- Chapter 4 Understanding the Impact and Implications of Emagnet and Pastebin in Cybersecurity -- 4.1 Introduction -- 4.1.1 Background of Emagnet and Pastebin -- 4.1.2 Importance of the Research -- 4.1.2.1 Research Questions -- 4.2 Literature Review -- 4.2.1 Evolution of Pastebin as a Platform for Hacker Exploits -- 4.2.1.1 Emagnet's Capabilities and Functionalities -- 4.3 Leaked Databases -- 4.4 Methodology -- 4.4.1 Emagnet -- 4.4.2 Key Features and Known Issues.
4.4.3 How Emagnet Works -- 4.4.4 Installation and Platform Requirements -- 4.4.5 Emagnet Usage Options -- 4.4.6 Key Features and Benefits -- 4.4.7 Our Review -- 4.4.8 Pastebin -- 4.4.9 Pastebin's Dark Side -- 4.4.10 The Need for Vigilance -- 4.4.11 Leveraging Authentic8 Flash Report -- 4.4.12 The Role of Silo for Research -- 4.4.13 Our Implementation Case Study -- 4.4.14 Our Review -- 4.5 Countermeasures and Best Practices -- 4.5.1 Strategies for Individuals and Organizations -- 4.5.2 Strengthening Password Security and Promoting 2FA -- 4.5.3 Responsible Vulnerability Disclosure -- 4.6 Recommendations and Future Directions -- 4.6.1 Developing Effective Policies -- 4.6.2 Enhancing Collaboration Between Stakeholders -- 4.6.3 Raising Awareness Among Users -- 4.6.4 Predicting Future Trends and Challenges -- 4.7 Conclusion -- References -- Chapter 5 Mitigating the Threat of Multi-Factor Authentication (MFA) Bypass Through Man-in-the-Middle Attacks Using EvilGinx2 -- 5.1 Introduction -- 5.1.1 Background and Significance of MFA in Enhancing Account Security -- 5.1.2 Overview of the Research Topic and the Use of EvilGinx2 for MFA Bypass -- 5.1.3 Research Objectives and Research Questions -- 5.2 Literature Review -- 5.2.1 Overview of MFA and its Effectiveness in Preventing Unauthorized Access -- 5.2.2 Previous Research on MFA Vulnerabilities and Bypass Techniques -- 5.2.3 Case Studies -- 5.3 Methodology -- 5.3.1 Description of Experimental Setup and Environment -- 5.3.2 Demonstration of EvilGinx2's Functionality and Operation -- 5.4 Results and Discussion -- 5.4.1 Evaluation of EvilGinx2's Ability to Bypass MFA Protections -- 5.4.2 Analysis of Captured Authentication Data, Including Usernames, Passwords, and Cookies -- 5.4.3 Discussion of the Effectiveness of the MFA Bypass Technique.
5.4.4 Identification of Potential Vulnerabilities and Areas of Improvement -- 5.5 Conclusion -- 5.5.1 Summary of the Research Objectives and Main Findings -- 5.5.2 Contribution to the Field of Cybersecurity and MFA Protection -- 5.5.3 Implications for Organizations and Recommendations for Future Research -- References -- Chapter 6 Implementation of Rule-Based DDoS Solution in Software-Defined Network -- 6.1 Introduction -- 6.2 Background Study -- 6.2.1 Software-Defined Network (SDN) -- 6.2.2 Software-Defined Architecture -- 6.2.2.1 Application Layer -- 6.2.2.2 Control Layer -- 6.2.2.3 Data Layer -- 6.2.3 OpenFlow Protocol -- 6.2.4 Flow Table -- 6.2.5 Advantages of SDN -- 6.2.6 Vulnerabilities of SDN and OpenFlow -- 6.2.6.1 SYN Flag DDoS Attacks in SDN -- 6.2.6.2 Three-Way Handshake in TCP Protocol -- 6.3 Critical Literature Review -- 6.3.1 Machine Learning-Based Mitigation -- 6.3.1.1 Limitations of Machine Learning-Based Approach -- 6.3.2 Statistical-Based Mitigation -- 6.3.2.1 Limitations of Statistical-Based Approach -- 6.3.3 Rule-Based Mitigation -- 6.3.3.1 Limitations of Rule-Based Approach -- 6.4 Methodologies -- 6.4.1 System Configuration -- 6.4.2 Static Threshold Rule-Based Approach -- 6.4.3 Testing -- 6.5 Results and Discussion -- 6.5.1 Reflection and Future Scope -- 6.6 Conclusion -- References -- Chapter 7 Securing Network Data with a Novel Encryption Scheme -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Proposed System and Methodology -- 7.3.1 Advanced Encryption Standards (AES) -- 7.3.2 RSA Public-Key Encryption -- 7.4 Results and Discussion -- 7.4.1 Result Analysis -- 7.4.1.1 CRC Generation Time -- 7.4.1.2 Encryption Time -- 7.4.1.3 Decryption Time -- 7.4.1.4 CRC Checker Time -- 7.4.1.5 CRC Generation Memory -- 7.4.1.6 Encryption Memory -- 7.4.1.7 CRC Checker Memory -- 7.4.1.8 Decryption Memory -- 7.4.1.9 Error Detection Capability.
7.5 Conclusion and Future Works -- References -- Chapter 8 A Robust Authentication Technique for Client-Server Secure Login -- 8.1 Introduction -- 8.2 Preliminary Concept -- 8.2.1 Cryptography -- 8.2.2 Symmetric Key Algorithms -- 8.2.3 Asymmetric Key Algorithms -- 8.2.4 Hash Function -- 8.2.5 Key Exchange -- 8.3 Related Work -- 8.3.1 Transport Layer Security (TLS) Protocol -- 8.3.2 Kerberos -- 8.3.3 Secure Remote Password (SRP) Protocol -- 8.3.4 OAuth -- 8.3.5 Mutual Authentication -- 8.4 Proposed Technique -- 8.4.1 Key-Generation Phase -- 8.4.2 Registration Phase -- 8.4.3 Login Phase -- 8.4.4 Principles of the Algorithm -- 8.5 Implementation -- 8.6 Discussion -- 8.6.1 Security Analysis -- 8.6.2 Security Features and Performance Comparison -- 8.7 Conclusion -- References -- Chapter 9 Application of a Web-Based Food Ordering Platform to Minimize Food Wastage and Prevent Theft -- 9.1 Introduction -- 9.1.1 Background -- 9.1.2 The Food Wastage Issues in Cafeterias -- 9.1.3 Overcrowding and Long Queues in Cafeteria -- 9.1.4 Theft and Delivery Assurance -- 9.1.5 Scalability of Cafeteria Operations -- 9.1.6 Lack of Use of Technology in School Cafeteria -- 9.1.7 Problems with Traditional Software Architecture -- 9.2 Literature Review -- 9.2.1 The Current Food Wastage Problem in Cafeterias -- 9.2.2 Identifying Gaps to Overcome Overcrowding Issues in Cafeteria -- 9.2.2.1 Similar Food Ordering Solutions -- 9.2.3 Research Gaps -- 9.3 Methodology -- 9.3.1 Introduction -- 9.3.2 Feature Requirements -- 9.3.3 System Architecture Requirements -- 9.3.4 Technical Requirements -- 9.3.5 Infrastructure Design -- 9.3.6 Software Architecture -- 9.3.7 IoT Integrations -- 9.3.8 Database Schema -- 9.4 Discussion -- 9.4.1 Advantages -- 9.4.2 Limitations -- 9.4.3 Comparison to Other Implementations -- 9.5 Conclusion -- References -- Part 2: IT in the Textile Industry.
Chapter 10 Research Design Machine Maintenance Management Software Module for Garment Industry -- 10.1 Introduction -- 10.2 Building a Maintenance Process for Garment Industry Machine -- 10.2.1 Maintenance Process for Machinery -- 10.2.2 Information in the Maintenance Management Machine Records -- 10.3 Designing a "Machine Maintenance Management" Software Module -- 10.3.1 Database Design -- 10.3.2 Designing a "Machine Maintenance Management" Software Module -- 10.4 Conclusion -- References -- Part 3: Adoption of ICT for Digitalization, Artificial Intelligence, and Machine Learning -- Chapter 11 Performance Comparison of Prediction of a Hydraulic Jump Depth in a Channel Using Various Machine Learning Models -- Nomenclature -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Materials and Methods -- 11.3.1 Equation of the Hydraulic Jump -- 11.3.2 Data Used in the Study -- 11.4 Machine Learning Models -- 11.4.1 Features of Machine Learning Models -- 11.4.2 Support Vector Machine (SVM) -- 11.4.3 Decision Tree (DT) -- 11.4.4 Random Forest (RF) -- 11.4.5 Artificial Neural Network (ANN) -- 11.5 Results and Discussion -- 11.6 Conclusions -- References -- Chapter 12 Creating a Video from Facial Image Using Conditional Generative Adversarial Network -- 12.1 Introduction -- 12.2 Related Works -- 12.3 Methodology -- 12.3.1 The Proposed Model -- 12.3.2 Conditional Generative Adversarial Network (cGAN) -- 12.3.3 Hidden Affine Transformation -- 12.4 Experiments -- 12.4.1 Dataset -- 12.4.2 Dlib -- 12.4.3 Evaluation -- 12.4.4 Result -- 12.5 Conclusion -- References -- Chapter 13 Deep Learning Framework for Detecting, Classifying, and Recognizing Invoice Metadata -- 13.1 Introduction -- 13.2 Related Works -- 13.3 Invoice Data Analysis -- 13.4 Proposed Method -- 13.5 Experiments -- 13.6 Conclusion and Perspectives -- References.
Chapter 14 Artificial Neural Network-Based Approach for Molecular Bitter Prediction.
Record Nr. UNINA-9911019977503321
Bijalwan Anchit  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Descrizione fisica 1 online resource (416 pages)
Disciplina 005.73
Soggetto topico Data structures (Computer science)
Soggetto genere / forma Electronic books.
ISBN 1-119-75204-3
1-119-75205-1
1-119-75203-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555098603321
Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Descrizione fisica 1 online resource (416 pages)
Disciplina 005.73
Soggetto topico Data structures (Computer science)
ISBN 1-119-75204-3
1-119-75205-1
1-119-75203-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910677236203321
Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Data structure and algorithms using C++ : a practical implementation / / edited by Sachi Nandan Mohanty and Pabitra Kumar Tripathy
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Descrizione fisica 1 online resource (416 pages)
Disciplina 005.73
Soggetto topico Data structures (Computer science)
ISBN 1-119-75204-3
1-119-75205-1
1-119-75203-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910823934703321
Hoboken, NJ : , : Wiley : , : Scrivener Publishing, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decision making and problem solving : a practical guide for applied research / / edited by Sachi Nandan Mohanty
Decision making and problem solving : a practical guide for applied research / / edited by Sachi Nandan Mohanty
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (xiii, 111 pages) : illustrations
Disciplina 150
Soggetto topico Psychology
Presa de decisions
Resolució de problemes
Soggetto genere / forma Llibres en Braille
Llibres electrònics
ISBN 3-030-66869-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483332503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Demystifying AI and ML for Cyber–Threat Intelligence / / edited by Ming Yang, Sachi Nandan Mohanty, Suneeta Satpathy, Shu Hu
Demystifying AI and ML for Cyber–Threat Intelligence / / edited by Ming Yang, Sachi Nandan Mohanty, Suneeta Satpathy, Shu Hu
Autore Yang Ming
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (712 pages)
Disciplina 006.3
Altri autori (Persone) MohantySachi Nandan
SatpathySuneeta
HuShu
Collana Information Systems Engineering and Management
Soggetto topico Computational intelligence
Data protection
Engineering - Data processing
Artificial intelligence
Computational Intelligence
Data and Information Security
Data Engineering
Artificial Intelligence
ISBN 3-031-90723-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Comprehensive Review on the Detection Capabilities of IDS using Deep Learning Techniques -- Next-Generation Intrusion Detection Framework with Active Learning-Driven Neural Networks for DDoS Defense -- Ensemble Learning-based Intrusion Detection System for RPL-based IoT Networks -- Advancing Detection of Man-in-the-Middle Attacks through Possibilistic C-Means Clustering -- CNN-Based IDS for Internet of Vehicles Using Transfer Learning -- Real-Time Network Intrusion Detection System using Machine Learning -- OpIDS-DL : OPTIMIZING INTRUSION DETECTION IN IoT NETWORKS: A DEEP LEARNING APPROACH WITH REGULARIZATION AND DROPOUT FOR ENHANCED CYBERSECURITY -- ML-Powered Sensitive Data Loss Prevention Firewall for Generative AI Applications -- Enhancing Data Integrity: Unveiling the Potential of Reversible Logic for Error Detection and Correction -- Enhancing Cyber security through Reversible Logic -- Beyond Passwords: Enhancing Security with Continuous Behavioral Biometrics and Passive Authentication.
Record Nr. UNINA-9911021155303321
Yang Ming  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...