top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 621.31244
Soggetto topico Solar cells - Materials
Soggetto genere / forma Electronic books.
ISBN 1-119-75217-5
1-119-75220-5
1-119-75218-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Solar Cells - Fundamentals and Emerging Categories -- 1 Introduction to Solar Energy Conversion -- 1.1 Introduction -- 1.2 Forms of Energy -- 1.3 Solar Radiation -- 1.4 Heat Transfer Principles -- 1.4.1 Conduction -- 1.4.2 Convection -- 1.4.3 Radiation -- 1.5 Basic Laws of Radiation -- 1.5.1 Stefan-Boltzmann Law -- 1.5.2 Planck's Law -- 1.5.3 Wien's Displacement Law -- 1.6 Solar Energy Conversion -- 1.6.1 Sources of Renewable and Non-Renewable Energy -- 1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources -- 1.7 Photo-Thermal Conversion System -- 1.7.1 Flat Plate Collector -- 1.7.2 Evacuated Solar Collector -- 1.8 Thermal Applications -- 1.8.1 Solar Water Heating Systems -- 1.8.2 Steam Generation -- 1.9 Solar Drying -- 1.9.1 Natural Circulation Methods -- 1.9.2 Forced Circulation Systems -- 1.10 Photovoltaic Conversion -- 1.10.1 Photovoltaic Effect -- 1.10.2 Applications -- 1.11 Photovoltaic Thermal Systems -- 1.12 Conclusion -- References -- 2 Development of Solar Cells -- Abbreviations -- 2.1 Introduction -- 2.2 First-Generation PV Cells -- 2.2.1 Single-Crystalline PV Cells -- 2.3 Second-Generation Solar PV Technology -- 2.3.1 Amorphous Silicon PV Cell -- 2.3.2 Cadmium Telluride PV Cell -- 2.3.3 Copper Indium Gallium Diselenide PV Cells -- 2.4 Third-Generation PV Cells -- 2.4.1 Copper Zinc Tin Sulfide PV Cell -- 2.4.2 Dye Sensitized PV Cell -- 2.4.3 Organic PV Cell -- 2.4.4 Perovskite PV Solar Cells -- 2.4.5 Polymer Photovoltaic Cell -- 2.4.6 Quantum Dot Photovoltaic Cell -- 2.5 Conclusion -- References -- 3 Recycling of Solar Panels -- Abbreviations -- 3.1 Introduction -- 3.2 PV and Recycling Development Worldwide -- 3.2.1 Causes of Inability in Solar PV Panel -- 3.3 Current Recycling and Recovery Techniques.
3.3.1 Methods for Recycling -- 3.3.2 Physical Separation -- 3.3.3 Thermal and Chemical-Based Treatment -- 3.4 Strategies for Recycling Processes -- 3.5 Approaches for Recycling of Solar Panel -- 3.5.1 Component Repair -- 3.5.2 Module Separation -- 3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules -- 3.6 Global Surveys in PV Recycling Technology -- 3.7 Ecological and Economic Impacts -- 3.7.1 Evolutionary Factors -- 3.7.2 Socio-Economic Concerns -- 3.8 Conclusion -- References -- 4 Multi-Junction Solar Cells -- Abbreviation -- 4.1 Introduction -- 4.1.1 Theory of Multi-Junction Cells -- 4.2 Key Issues for Realizing the Efficiency of MJCs -- 4.2.1 Preference of Top Layer Materials and Enhancing the Quality -- 4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction -- 4.2.3 Lattice-Matching Between Cell Materials and Substrates -- 4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer -- 4.3 Structure of Multi-Junction Cell -- 4.3.1 Multi-Junction Cell With BSF Layer -- 4.3.2 Optimization of BSF Layers -- 4.4 Novel Materials for Multi-Junction Cells -- 4.5 Applications -- 4.6 Conclusions -- References -- 5 Perovskite Solar Cells -- 5.1 Introduction -- 5.2 Structure and Working -- 5.3 Fabrication of Simple Perovskite Solar Cell -- 5.4 Fabrication Methods -- 5.4.1 Spin Coating -- 5.4.2 Blade Coating -- 5.4.3 Slot-Die Coating -- 5.4.4 Inkjet Printing -- 5.4.5 Screen Printing -- 5.4.6 Electrodeposition -- 5.4.7 Vapor-Phase Deposition -- 5.5 Stability of Perovskite Solar Cell -- 5.6 Losses in Solar Cells -- 5.7 Conclusion -- References -- 6 Natural Dye-Sensitized Solar Cells -- Abbreviations -- 6.1 Introduction -- 6.2 Dye-Sensitized Solar Cells (DSSCs) -- 6.2.1 The Structure and Operation Principle -- 6.2.2 Performance Parameters of DSSCs.
6.2.2.1 Open Circuit Voltage -- 6.2.2.2 Short Circuit Current -- 6.2.2.3 Fill Factor -- 6.2.2.4 Efficiency -- 6.3 Dye (Photosensitizer) -- 6.3.1 Natural Dyes -- 6.3.2 Plant Pigments -- 6.3.2.1 Anthocyanin -- 6.3.2.2 Chlorophylls -- 6.3.2.3 Betalain -- 6.3.2.4 Carotenoids -- 6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers-Notable Studies -- 6.4 Conclusion -- References -- Part 2: Materials, Methods and Applications -- 7 Organic Materials and Their Processing Techniques -- 7.1 Introduction -- 7.2 Organic Materials -- 7.2.1 Organic Solar Cell -- 7.2.2 Challenges in Organic Solar Cells -- 7.2.3 Focus Area to Overcome the Challenges -- 7.2.4 Operation of Organic Solar Cells -- 7.2.5 Organic Solar Cell Device Architecture -- 7.3 Electrical Characteristics of OPVs -- 7.3.1 Open-Circuit Voltage -- 7.3.2 Short-Circuit Current -- 7.3.3 Maximum Power Point -- 7.3.4 Fill Factor -- 7.3.5 Power Conversion Efficiency -- 7.3.6 Quantum Efficiency -- 7.4 Potential Materials for OPV Applications -- 7.4.1 Electron-Donor Materials -- 7.4.2 Electron-Acceptor Materials -- 7.5 Conclusion -- References -- 8 Inorganic Materials and Their Processing Techniques -- 8.1 Introduction -- 8.2 Functional Inorganic Materials -- 8.3 Comprehensive Processing Strategy -- 8.4 Solid-Phase Processing -- 8.4.1 Ceramic Method -- 8.4.2 Microwave Technique -- 8.4.3 Combustion Synthesis -- 8.4.4 Mechanochemical Synthesis -- 8.4.5 Carbothermal Reduction -- 8.4.6 Friction Consolidation -- 8.4.7 3D Printing Technique -- 8.4.8 Nanolithography Technique -- 8.5 Solution-Phase Processing -- 8.5.1 Sol-Gel Process -- 8.5.2 Hydrothermal and Solvothermal Process -- 8.5.3 Sonochemical Synthesis -- 8.5.4 Surface Coating Technique -- 8.5.5 Spray Pyrolysis Technique -- 8.5.6 Electroplating and Electrodeposition Process -- 8.5.7 Liquid Printing Technique.
8.5.8 Liquid-Phase Laser Ablation Technique -- 8.5.9 Electrospinning and Electrospraying Technique -- 8.6 Gas-Phase Processing -- 8.6.1 Physical Vapor Deposition Technique -- 8.6.2 Chemical Vapor Deposition Technique -- 8.6.3 Inert Gas Condensation Technique -- 8.6.4 Molecular Beam Epitaxy Technique -- 8.6.5 Gas-Phase Flame Spray Pyrolysis -- 8.7 Challenges in Nanomaterial Production and Processing -- 8.8 Conclusion and Perspectives -- References -- 9 2D Materials for Solar Cell Applications -- 9.1 Introduction -- 9.2 Fundamental Principles of Solar Cell -- 9.3 Fabrication Methods for the Generation of Solar Cell -- 9.3.1 Spin Coating -- 9.3.2 Spray Coating -- 9.3.3 Doctor Blading -- 9.3.4 Slot-Die Coating -- 9.3.5 Vacuum Deposition/Chemical Vapor Deposition -- 9.3.6 Screen Printing -- 9.4 Introduction to 2D Materials -- 9.4.1 Graphene -- 9.4.2 Boron Nitride -- 9.4.3 Molybdenum Disulfide -- 9.4.4 MXenes -- 9.4.5 Other 2D Materials -- 9.5 Solar Cell Application of 2D Materials -- 9.5.1 2D Materials for Organic Solar Cells -- 9.5.2 2D Materials for Perovskite Solar Cells -- 9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs) -- 9.5.4 2D Materials for Other Solar Cell -- 9.6 Conclusions -- References -- 10 Nanostructured Materials and Their Processing Techniques -- 10.1 Introduction -- 10.2 The Need for Solar Energy -- 10.2.1 Solar Photovoltaic Cell -- 10.2.2 Solar Thermal Heating -- 10.3 Nanoscience and Nanotechnology -- 10.4 Nanotechnology in Solar Energy -- 10.4.1 Nanomaterials -- 10.4.2 Properties of Nanomaterials -- 10.4.3 Nanofluids -- 10.5 The Outlook of Nanomaterials in the Performance of Solar Cells -- 10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques -- 10.6.1 Sol-Gel Method -- 10.6.2 Hydrothermal Method -- 10.6.3 Solvothermal Technique -- 10.6.4 Co-Precipitation Technique -- 10.6.5 Magnetron Sputtering.
10.6.6 Spin Coating -- 10.6.7 Chemical Vapor Deposition Technique -- 10.7 Nanofluids in Solar Collectors -- 10.8 Nanofluids in Solar Stills -- 10.9 Conclusion -- References -- 11 Coating Materials, Methods, and Techniques -- 11.1 Introduction -- 11.2 Thin Film Deposition Techniques -- 11.2.1 Advantages of Thin Films -- 11.3 Anti-Reflection Thin Films -- 11.4 Methods of Thin Film Growth -- 11.4.1 Physical Vapor Deposition -- 11.4.2 Thermal Evaporation Process -- 11.4.3 Pulsed Laser Deposition -- 11.4.4 Sputter Deposition -- 11.4.5 Chemical Vapor Deposition -- 11.4.6 Plasma-Enhanced CVD Method -- 11.4.7 Electrochemical Deposition -- 11.4.8 Sol-Gel Thin Film Formation -- 11.5 Thin Film Characterization -- 11.5.1 X-ray Diffraction -- 11.5.2 Fourier Transform Infrared Spectroscopy -- 11.5.3 Thermogravimetry and Differential Thermal Analysis -- 11.5.4 UV-Visible Spectroscopy -- 11.5.5 Field Emission Scanning Electron Microscope -- 11.5.6 High-Resolution Transmission Electron Microscope -- 11.5.7 Atomic Force Microscopy -- 11.5.8 Four-Probe Technique -- 11.6 Performance Analysis of ARC Coated Solar Cells -- 11.7 Conclusion -- References -- 12 Anti-Reflection Coating -- 12.1 Introduction -- 12.2 Anti-Reflection Coating -- 12.2.1 Types of Anti-Reflection Coating -- 12.2.2 Textured Coating -- 12.2.3 Anti-Reflection Coating With Self-Cleaning -- 12.3 Perspectives on ARC Materials -- 12.3.1 Silicon-Based Material -- 12.3.2 TiO2-Based Material -- 12.3.3 Carbon-Based Material -- 12.3.4 Gallium-Based Material -- 12.3.5 Polymer-Based Material -- 12.3.6 Organic-Based Material -- 12.4 Techniques for Coating ARC -- 12.4.1 Sol-Gel Technique -- 12.4.2 Physical Vapor Deposition -- 12.4.3 RF and DC Magnetron Sputtering Technique -- 12.4.4 Chemical Vapor Deposition -- 12.4.5 Electrospinning Technique -- 12.4.6 Spray Pyrolysis Technique -- 12.4.7 Lithography.
12.4.8 Comparison of Coating Techniques.
Record Nr. UNINA-9910554807503321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 621.31244
Soggetto topico Solar cells - Materials
ISBN 1-119-75217-5
1-119-75220-5
1-119-75218-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 12.4.8 Comparison of Coating Techniques.
Record Nr. UNINA-9910830139603321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui