top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
Autore Mohammed Salah-Eldin <1946->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (120 p.)
Disciplina 519.2
Collana Memoirs of the American Mathematical Society
Soggetto topico Stochastic partial differential equations
Stochastic integral equations
Manifolds (Mathematics)
Evolution equations
Soggetto genere / forma Electronic books.
ISBN 1-4704-0523-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910480868803321
Mohammed Salah-Eldin <1946->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
Autore Mohammed Salah-Eldin <1946->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (120 p.)
Disciplina 519.2
Collana Memoirs of the American Mathematical Society
Soggetto topico Stochastic partial differential equations
Stochastic integral equations
Manifolds (Mathematics)
Evolution equations
ISBN 1-4704-0523-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910788853603321
Mohammed Salah-Eldin <1946->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao
Autore Mohammed Salah-Eldin <1946->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2008]
Descrizione fisica 1 online resource (120 p.)
Disciplina 519.2
Collana Memoirs of the American Mathematical Society
Soggetto topico Stochastic partial differential equations
Stochastic integral equations
Manifolds (Mathematics)
Evolution equations
ISBN 1-4704-0523-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography""
Record Nr. UNINA-9910827764203321
Mohammed Salah-Eldin <1946->  
Providence, Rhode Island : , : American Mathematical Society, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui