Active building energy systems : operation and control / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (394 pages) |
Disciplina | 720.472 |
Collana | Green energy and technology |
Soggetto topico |
Architecture and energy conservation
Buildings - Energy conservation Renewable energy sources |
ISBN | 3-030-79742-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910568255703321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks |
Autore | Daneshvar Mohammadreza |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (547 pages) |
Altri autori (Persone) |
Mohammadi-IvatlooBehnam
ZareKazem |
Collana | IEEE Press Series on Power and Energy Systems Ser. |
ISBN |
1-119-86216-7
1-119-86213-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter. 6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References. Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential. 9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage. 11.8.3 Second Stage. |
Record Nr. | UNINA-9910632500803321 |
Daneshvar Mohammadreza | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coordinated operation and planning of modern heat and electricity incorporated networks / / edited by Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo and Kazem Zare |
Pubbl/distr/stampa | Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (547 pages) |
Disciplina | 621.31 |
Collana | IEEE Press series on power and energy systems |
Soggetto topico |
Electric power systems - Planning
Heating from central stations Electric power systems |
ISBN |
1-119-86216-7
1-119-86213-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter. 6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References. Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential. 9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage. 11.8.3 Second Stage. |
Record Nr. | UNINA-9910677354803321 |
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Demand-Side Peer-to-Peer Energy Trading / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (222 pages) |
Disciplina | 929.374 |
Collana | Green Energy and Technology |
Soggetto topico |
Energy policy
Energy and state Electric power distribution Renewable energy sources Energy Policy, Economics and Management Energy Grids and Networks Energy System Transformation Renewable Energy |
ISBN | 3-031-35233-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Overview of the Peer-to-Peer (P2P) Transactions and Transactive Energy (TE) Concepts, Challenges, and Outlook -- Chapter 2. The Role and Position of P2P and TE in Worldwide Energy Evolution -- Looking at P2P Transactions and TE Through the Lens of Sharing Economy and Digital Economy -- Chapter 3. TE Technologies, Standards, and Communication Protocols -- Chapter 4. Policy, Regulation, and Market Issues in P2P Transactions -- Chapter 5. Pilots and Demonstrators Around the World -- Chapter 6. Cybersecurity and Data Privacy Issues in P2P Transactions -- Chapter 7. Application of Artificial Intelligence and Machine Learning Approaches in P2P -- Chapter 8. Transactions -- Chapter 9. Long-Term Effects of P2P Transactions on Energy Systems -- Chapter 10. Participation of the Demand-Side Agents in Ancillary Services via P2P Transactions -- Chapter 11. The Cryptocurrencies and Their Role in Future Energy Transactions -- Chapter 12. Blockchain-based TE Platform for Energy Transactions -- Chapter 13. Distributed Optimization Applications to P2P Trading -- Chapter 14. Utilizing Shared Energy Storage in P2P Trading. |
Record Nr. | UNINA-9910736978103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (250 pages) |
Disciplina | 629.286 |
Collana | Green energy and technology |
Soggetto topico | Battery charging stations (Electric vehicles) |
ISBN | 3-031-05909-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Standardised Domestic EV Smart Charging for Interoperable Demand Side Response: PAS 1878 and 1879 -- 1.1 Introduction -- 1.1.1 Purpose of Demand-Side Response -- 1.1.2 Status Quo, Challenges and Outlook -- 1.1.3 Assumptions of the Standardised Framework -- 1.1.4 Overview of Operation -- 1.1.5 Underpinning Principles -- 1.1.6 Scope -- 1.2 System Architecture -- 1.2.1 Functional Architecture -- 1.2.1.1 Compatibility with International Standards -- 1.2.1.2 Key Requirements -- 1.2.2 Descriptions of Functional Devices and Entities -- 1.2.2.1 DSR Service Provider (DSRSP) -- 1.2.2.2 Customer Energy Manager (CEM) -- 1.2.2.3 Home Energy Management System (HEMS) -- 1.2.2.4 Chargepoint (The ESA Functionality) -- 1.2.2.5 Chargepoint Manufacturer -- 1.2.2.6 Electric Vehicle (EV) -- 1.2.2.7 System Operators and Market Participants (SOMPs) -- 1.2.2.8 Electricity Supplier -- 1.2.2.9 National Electricity Regulator -- 1.2.3 Descriptions of Interfaces -- 1.2.3.1 Interface A -- 1.2.3.2 Interface B -- 1.2.3.3 Manufacturer Interface -- 1.2.3.4 Interface C -- 1.2.3.5 Interface M -- 1.2.3.6 External System Interface -- 1.2.3.7 Chargepoint and EV Interface -- 1.3 Operation Framework -- 1.3.1 Operation Process and DSR Modes -- 1.3.1.1 (a) Consumer Registration with the DSRSP -- 1.3.1.2 (b) Discovery, Authentication and Device Registration -- 1.3.1.3 (c) Initialisation -- 1.3.1.4 (d) Normal Operation -- 1.3.1.5 (e) De-registration -- 1.3.2 Power Profiles for DSR -- 1.3.2.1 Flexibility Offers as Power Profiles -- 1.3.2.2 Frequency Response Indicator -- 1.3.2.3 Information Required for Power Profiles -- 1.3.2.4 Power Reporting -- 1.3.3 Cyber Security Approach -- 1.4 EV Smart Charging for DSR Services -- 1.4.1 Mapping to IEC/ISO Standards for EVs.
1.4.2 Example Use Case: EV Implementation for DSR Services -- 1.4.2.1 Registration -- 1.4.2.2 Normal Operation -- 1.4.2.3 De-registration -- Bibliography -- 2 The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications -- 2.1 Introduction -- 2.2 Battery Management System (BMS) -- 2.3 Battery Fault Detection -- 2.4 Battery State-of-Function Estimation -- 2.4.1 Battery SoH Estimation -- 2.4.2 Battery SoC Estimation -- 2.5 Conclusions -- References -- 3 Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques -- 3.1 Introduction -- 3.1.1 Electric Vehicles -- 3.1.1.1 Taxonomy of EVs -- 3.1.1.2 EV Integration's Benefits -- 3.1.1.3 Challenges and Problems of EVs High Penetration -- 3.1.2 Data Challenges of the High Penetration of the EVs -- 3.1.3 Energy Management of the EVs' Smart Charging -- 3.1.3.1 Concepts and Applications -- 3.1.3.2 Challenges and Opportunities -- 3.1.4 Literature Review on EV Integration -- 3.2 Identification of EV Charging Patterns -- 3.2.1 Clustering Concept and Principles -- 3.2.1.1 Concept of the Clustering -- 3.2.1.2 Principles of the Clustering -- 3.2.2 Clustering of the Charging Patterns -- 3.2.3 Utilization of ML Algorithms for Clustering the Charging Patterns -- 3.2.3.1 Unsupervised Learning -- 3.2.3.2 Supervised Learning -- 3.2.4 ML-Based Approach to Cluster the EV Charging Behaviors -- 3.2.4.1 Preprocessing -- 3.2.4.2 EV's Charging Behavior Clustering Using K-Means Algorithm -- 3.2.4.3 K-NN Classification for EV Charging Behavior -- 3.2.5 A Toy Example -- 3.2.6 Application of Charging Pattern Recognition in Smart Charging -- 3.3 Status Quo, Challenges, and Outlook -- 3.4 Concluding Remarks -- References -- 4 Cybersecurity and Data Privacy Issues of Electric Vehicles Smart Charging in Smart Microgrids -- 4.1 Introduction. 4.2 Cyberattacks and Security Issues of EVs -- 4.2.1 Various Attacks on EVs -- 4.2.1.1 Attacks on Control Systems -- 4.2.1.2 Attacks on Driving System Parts -- 4.2.1.3 Attacks on V2X Communication -- 4.2.2 The Vulnerability of EV Charging Stations to Cyberattacks -- 4.2.2.1 Web-Based Vulnerabilities -- 4.2.2.2 Human-Machine Interface Vulnerabilities and Physical Access Points -- 4.2.2.3 The Vulnerability of Servers -- 4.2.2.4 The Vulnerability of Smartphones -- 4.2.2.5 The Vulnerability of Building Energy Management System and Grid Interface -- 4.2.2.6 The Vulnerability of Original Equipment Manufacturers/Vendors -- 4.2.3 Cybersecurity Challenges in EV Communication -- 4.2.3.1 Limited Connectivity -- 4.2.3.2 Limited Computational Performance -- 4.2.3.3 The Scenarios and Threats of Unpredictable Attacks -- 4.2.3.4 Critical Hazard to the Life of Drivers and Passengers -- 4.2.4 Data Privacy Challenges in Smart EV Networks -- 4.2.5 Classifying the Cybersecurity Threats of On-Board Charging -- 4.2.5.1 Modification -- 4.2.5.2 Interference -- 4.2.5.3 Interruption -- 4.2.5.4 Interception -- 4.2.6 Risk Assessment -- 4.2.7 The Review of Attacker-Defender Models -- 4.2.8 Cybersecurity Requirements -- 4.2.8.1 The Security Goals for EV Ecosystem -- 4.2.8.2 Security Requirements Based on NISTIR 7628 -- 4.3 Status Quo, Challenges, and Outlook -- 4.4 Learned Lessons and Concluding Remarks -- References -- 5 Evaluation of Cyberattacks in Distribution Network with Electric Vehicle Charging Infrastructure -- 5.1 Introduction -- 5.2 Status Quo, Challenges, and Outlook -- 5.2.1 EV2EVSE -- 5.2.2 EVSE2EVSE -- 5.2.3 EV2EV -- 5.3 Related Work -- 5.4 Cyberattack Model -- 5.4.1 Response Model -- 5.5 Experimental Results -- 5.6 Conclusion -- References -- 6 Electric Vehicle Services to Support the Power Grid -- 6.1 Introduction. 6.2 Classification of EV Services Presentable to the Power Grid -- 6.2.1 EV's Active and Reactive Power Support Services -- 6.2.1.1 Frequency Control -- 6.2.1.2 Load Variance Minimization, Peak Shaving, and Valley Filling -- 6.2.1.3 Loads Restoration -- 6.2.1.4 Loss Minimization -- 6.2.1.5 Voltage Control -- 6.2.2 Support Services for Renewable Energy Sources Integration -- 6.3 Combination Capability of EVs' Different Services -- 6.4 Mathematical Modeling of EVs' Charging and Discharging Optimization Problem in the Power System -- 6.4.1 Constraints on EVs' Charging and Discharging Optimization Problem -- 6.4.1.1 EV Constraints -- 6.4.1.2 Network Constraints -- 6.4.2 Mathematical Models and Problem-Solving Methods for Optimizing Charge and Discharge of EVs -- 6.5 Current Status, Challenges, and Outlook -- 6.6 Conclusion -- References -- 7 Smart Charging of EVs to Harvest Flexibility for PVs -- 7.1 Status Quo, Challenges and Outlook -- 7.2 Introduction -- 7.2.1 Background and Literature Review -- 7.2.2 Contributions -- 7.2.3 Chapter Organization -- 7.3 Determination of Optimal EV Demand Profile -- 7.3.1 Assumptions -- 7.3.2 Mathematical Formulation -- 7.4 Numerical Studies -- 7.4.1 Data -- 7.4.2 Case-I: EVs Profile Optimization, Without Considering PVs -- 7.4.3 Case-II: EVs Profile Optimization, Considering PVs -- 7.4.4 Comparative Analysis of Cases -- 7.5 Conclusion -- Bibliography -- 8 A Robust Optimization-Based Model for Smart Charging of PEV Under Multiple Uncertainties -- 8.1 Introduction -- 8.2 Mathematical Representation of the Deterministic PEV Smart Charging -- 8.2.1 Constraints -- 8.3 The Proposed IGDT-Based Model for Robust Smart PEV Charging -- 8.3.1 The Information Gap Decision Theory (IGDT) -- 8.3.2 The Proposed IGDT-Based PEV Smart Charging -- 8.3.3 Multi-objective Particle Swarm Optimization (MOPSO). 8.3.3.1 Concise Review of PSO Algorithm -- 8.3.3.2 The Concept of Dominance in a Multi-objective Problem -- 8.3.3.3 The MOPSO Step-by-Step Implementation -- 8.3.4 Fuzzy Satisfaction Method -- 8.4 Numerical Results -- 8.4.1 Input Data -- 8.4.2 The SOC and Power Analysis -- 8.4.3 Robustness Assessment -- 8.5 Conclusion -- References -- 9 The Role of Smart Electric Vehicle Charging in Optimal Decision-making of the Active Distribution Network -- Nomenclature -- Sets and Indices -- Parameters -- Variables -- Binary Variables -- 9.1 Introduction -- 9.2 Status Quo, Challenges, and Outlook -- 9.3 Formulation -- 9.3.1 Hybrid Stochastic Programming/Robust Optimization Model -- 9.3.2 Electric Vehicles -- 9.3.3 Combined Heat and Power Unit -- 9.3.4 Solar Distributed Generations -- 9.3.5 Distribution System -- 9.3.6 The Objective Function -- 9.4 Results and Discussions -- 9.5 Conclusion -- References -- 10 Operational Challenges of Electric Vehicle Smart Charging -- 10.1 Status Quo, Challenges, and Outlook -- 10.2 Definition -- 10.3 Electric Vehicle Technology -- 10.4 Electric Vehicles Charging -- 10.4.1 Charging Standards for Electric Vehicles -- 10.4.2 Charging Speed and Duration -- 10.4.3 Electric Vehicle Smart Charging (EVSC) -- 10.5 Control of EVSC: Centralized and Decentralized Control Approaches -- 10.6 Benefits of EVSC -- 10.7 Main Challenges of Using EVSCs -- 10.7.1 Connectivity and Infrastructure in EVSC -- 10.7.2 The Minimum Requirements for EVSC -- 10.8 Conclusion -- References -- Index. |
Record Nr. | UNINA-9910592991503321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Energy systems transition : digitalization, decarbonization, decentralization and democratization / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo |
Autore | Vahidinasab Vahid |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (246 pages) |
Disciplina | 333.7916 |
Collana | Power Systems |
Soggetto topico |
Energy transition
Renewable energy sources |
ISBN | 3-031-22186-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Chapter 1: Energy Systems Decarbonization: Design Optimization of a Commercial Building MG System Considering High Penetration... -- 1.1 Introduction -- 1.2 Description of the Proposed Commercial MG System -- 1.2.1 PV -- 1.2.2 Wind Turbine -- 1.2.3 Fuel Cell -- 1.2.4 Electrical Energy Storage -- 1.2.5 Loads -- 1.3 Problem Formulation -- 1.3.1 Objective Function -- 1.3.1.1 The NPC of Each Applied DG -- 1.3.1.2 Fuel Cost -- 1.3.1.3 Penalty for CO2 Emission -- 1.3.1.4 Penalty for Interrupted Loads -- 1.3.2 Constraints -- 1.3.2.1 Electrical Power Balance -- 1.3.2.2 Operational of Each Type of DG -- 1.3.2.3 Energy Storage Constraint -- 1.3.2.4 Energy System Decarbonization -- 1.3.2.5 Reliability Constraint -- 1.4 MG Strategy to Supply Electrical Demands -- 1.5 Simulation Results and Discussion -- 1.5.1 Optimization of the Commercial MG -- 1.5.2 Impact of RES and BESS Utilization on System Decarbonization -- 1.5.3 Considering Load Growth in the MG -- 1.6 Conclusion -- References -- Chapter 2: Data Analytics Applications in Digital Energy System Operation -- 2.1 Introduction -- 2.2 Existing Challenges and Literature Review -- 2.3 Data Processing Tools and Techniques -- 2.3.1 Preprocessing and Data Quality -- 2.3.2 Machine Learning Techniques -- 2.4 Big Data Analysis and Security -- 2.4.1 Big Data Characteristics -- 2.4.2 Data Generation and Acquisition -- 2.4.3 Data Storage -- 2.4.4 Data Processing -- 2.5 Data Security in Smart Grids -- 2.5.1 Forecasting Techniques in Data Security -- 2.6 Applications of Data Analysis in the Digital Operation -- 2.7 Conclusion -- References -- Chapter 3: A New Stable Solar System for Electricity, Cooling, Heating, and Potable Water Production in Sunny Coastal Areas -- 3.1 Introduction -- 3.2 System Description -- 3.3 Modeling Equations -- 3.3.1 Thermodynamic Analysis.
3.3.2 Exergoeconomic Analysis -- 3.3.3 Solar Energy Collector (SEC) -- 3.3.4 Molten Salt Heat Storage Tanks (MSHST) -- 3.3.5 Performance Criteria -- 3.3.6 Optimization -- 3.3.7 Verification -- 3.4 Results and Discussion -- 3.4.1 Base Case Study -- 3.4.2 Parametric Study -- 3.4.3 Optimization Results -- 3.5 Conclusions -- References -- Chapter 4: Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization -- 4.1 Introduction -- 4.2 System Description -- 4.2.1 Organic Rankine Cycle -- 4.2.2 Carbon Capture Unit -- 4.2.3 Water Electrolyzer Subsystem -- 4.2.4 Methanol Synthesis Unit -- 4.2.5 Direct Methanol Fuel Cell Subsystem -- 4.3 System Analysis -- 4.4 Results and Discussion -- 4.4.1 Base Case -- 4.4.2 Parametric Study -- 4.5 Conclusions -- References -- Chapter 5: Protection and Monitoring of Digital Energy Systems Operation -- 5.1 Introduction -- 5.2 Overview of Protection Key Points and Definitions -- 5.3 Overview of Microgrid Protection Bottlenecks -- 5.3.1 Loss of Coordination -- 5.3.2 Protection Under-reaching, Desensitization, or Blinding -- 5.3.3 False Tripping (Nuisance and Sympathetic) -- 5.3.4 Auto-reclosers -- 5.3.5 Sectionalizers -- 5.3.6 Unintentional Islanding -- 5.3.7 Heavily Power Electronic-Based Grids -- 5.4 IBR Control Schemes and Grid Protection -- 5.4.1 Solutions to IBR Protection Issues -- 5.4.1.1 Emulation of Synchronous-Generator Fault Response -- 5.4.1.2 Active Protection Methods -- 5.4.1.3 Source-Independent Relays -- 5.4.1.4 Comparison of the Solutions to Protection Methods -- 5.5 Predictive Wide-Area Monitoring, Protection, and Control -- 5.5.1 Cascading Failures in Large Power Systems -- 5.5.2 Estimation Based on Synchronized Measurements -- 5.5.3 Protective Wide-Area Monitoring Structure -- 5.6 IoT, Auxiliary Protection, and Monitoring Methods. 5.6.1 IoT in Protection -- 5.7 Artificial Intelligence-Based Protection -- 5.7.1 ANN-Based Relays -- 5.7.2 Relays Based on SVM -- 5.7.3 Fuzzy Logic -- 5.8 Conclusion -- References -- Chapter 6: Optimizing Wind Power Participation in Day-Ahead Electricity Market Using Meta-heuristic Optimization Algorithms -- 6.1 Introduction -- 6.2 Electricity Market Modeling -- 6.3 Calculation of Uncertainty in Wind Power -- 6.4 Main Focus of the Chapter -- 6.5 Results of Analysis -- 6.5.1 Meta-heuristic Optimization Algorithms Application in Minimizing Total Expected Costs -- 6.6 Future Work -- 6.7 Conclusion -- References -- Chapter 7: Robust Energy Management of Virtual Energy Hub Considering Intelligent Parking Lots for the Plug-In Hybrid Electric... -- 7.1 Introduction -- 7.1.1 Background and Motivations -- 7.1.2 Related Works -- 7.1.3 Novelties and Contributions -- 7.2 Problem Modeling -- 7.2.1 Objective Function -- 7.2.2 CHP -- 7.2.3 Boiler -- 7.2.4 Wind Farm -- 7.2.5 Intelligent Parking Lot -- 7.2.6 Thermal Buffer Tank -- 7.2.7 Electrical and Thermal Markets -- 7.2.8 End Consumers -- 7.2.9 Demand Response -- 7.2.10 Power Balance -- 7.2.11 Robust Optimization -- 7.3 Simulation -- 7.3.1 Input Data -- 7.3.2 Case Study 1 -- 7.3.3 Case Study 2 -- 7.4 Conclusion -- References -- Chapter 8: Hybrid Interval-Stochastic Optimal Operation Framework of a Multi-carrier Microgrid in the Presence of Hybrid Elect... -- 8.1 Introduction -- 8.2 Problem Description -- 8.3 Problem Formulation -- 8.3.1 Stochastic-Based Proposed Model -- 8.3.1.1 Objective Function -- 8.3.1.2 Gas-Based Non-renewable Energy Source Constraints -- 8.3.1.3 Renewable Energy Source Constraints -- 8.3.1.4 Hydrogen Energy-Based Source Constraints -- 8.3.1.5 Cooling Energy Constraints -- 8.3.1.6 Energy Storage System Constraints -- 8.3.1.7 Heat Storage System Constraints. 8.3.1.8 Ice Storage System Constraints -- 8.3.1.9 Hydrogen Storage System Constraints -- 8.3.1.10 Electric Vehicle Intelligent Parking Lot Constraints -- 8.3.1.11 All Energy Balance Constraints -- 8.3.2 Interval-Based Stochastic Proposed Model -- 8.3.2.1 General Model Specifications -- 8.3.2.2 Weighted Sum and Fuzzy Solution Approaches -- 8.4 Simulation Results -- 8.4.1 All Input Data -- 8.4.2 Case Studies and Analysis of Results -- 8.4.2.1 Stochastic-Based Simulation Results -- 8.4.2.2 Interval-Based Simulation Results -- 8.5 Conclusions -- References -- Index. |
Record Nr. | UNINA-9910672435903321 |
Vahidinasab Vahid | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Food-Energy-Water Nexus Resilience and Sustainable Development : Decision-Making Methods, Planning, and Trade-Off Analysis / / edited by Somayeh Asadi, Behnam Mohammadi-Ivatloo |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 358 p. 136 illus., 120 illus. in color.) |
Disciplina | 338.927 |
Soggetto topico |
Renewable energy resources
Environmental management Agriculture Sustainable development Sustainable architecture Energy security Renewable and Green Energy Water Policy/Water Governance/Water Management Sustainable Development Sustainable Architecture/Green Buildings Energy Security |
ISBN | 3-030-40052-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to FEW nexus -- Resiliency and sustainability definition in FEW systems -- Planning of interdependent energy, water and food systems -- Decision-making tools for optimal operation of FEW systems -- Modeling of EW and FEW systems -- Sustainable design of EW and FEW systems -- Impact of renewable energy resources in EW and FEW systems -- Renewable energy based water desalination systems -- Net zero energy buildings: design and operation -- Net zero water and waste buildings: design and operation -- Renewable energy systems for agriculture applications -- Security interactions of food, water and energy systems -- Challenges and opportunities of FEW nexus in the sustainable development of different countries -- Impact of FEW nexus perspectives on managing agricultural droughts -- An integrated modeling approach for FEW nexus management. |
Record Nr. | UNINA-9910410022403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Green Hydrogen in Power Systems / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, Jeng Shiun Lim |
Autore | Vahidinasab Vahid |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (363 pages) |
Disciplina | 621.042 |
Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Shiun LimJeng |
Collana | Green Energy and Technology |
Soggetto topico |
Renewable energy sources
Hydrogen as fuel Energy storage Electric power distribution Energy policy Renewable Energy Hydrogen Energy Mechanical and Thermal Energy Storage Energy Grids and Networks Energy System Transformation |
ISBN | 3-031-52429-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foreword -- Green Hydrogen (GH2) strategies around the world for a deep decarbonization -- The role and position of GH2 in worldwide power & energy evolution -- Looking at GH2 through the lens of decarbonized economy -- Role of GH2 in achieving net-zero carbon emissions -- GH2 production: technologies and standards -- GH2 networks: technologies and standards -- GH2 storage: technologies and standards -- Roles of GH2 in power systems flexibility -- Power systems planning considering GH2 integration -- Policy and market frameworks -- Technology/User readiness for accelerating GH2 in power systems -- Distributed electrolyzer planning in power systems -- Impacts of distributed GH2 facilities on power system technical characteristics -- Sector-coupling via GH2 -- Life cycle cost assessment of implementing GH2 in power systems -- GH2 supply chain planning for power system -- Energy and exergy analysis for GH2 power system -- Techno-economic analysis for decentralized vs centralized GH2 power system -- Integration of solar PV with GH2 for decentralized power system -- The GH2 potential in different regions considering power system constraints -- Pilots and demonstrators around the world. |
Record Nr. | UNINA-9910845088303321 |
Vahidinasab Vahid | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Grid modernization - future energy network infrastructure : overview, uncertainties, Modelling, optimization, and analysis / / Mohammadreza Daneshvar, Somayeh Asadi, Behnam Mohammadi-Ivatloo |
Autore | Behnam Mohammadi-Ivatloo |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XVI, 280 p. 75 illus., 74 illus. in color.) |
Disciplina | 621.319 |
Collana | Power Systems |
Soggetto topico | Smart power grids |
ISBN | 3-030-64099-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Overview of the grid modernization and smart grids -- Modernizing the energy customer side -- Technical and theoretical analysis of the future energy network modernization from various aspects -- Advanced communication protocols in modernizing of the future energy grids -- Energy trading possibilities in the modern multi carrier energy networks -- Probabilistic modeling and optimizing of the modern grids with a full share of RERs: robustness and opportunistic analyzing of the system -- An application of the General Algebraic Modeling System (GAMS) in the optimization of the modern grids. |
Record Nr. | UNINA-9910484837603321 |
Behnam Mohammadi-Ivatloo | ||
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems : Design, Modeling and Robust Optimization / / edited by Farkhondeh Jabari, Behnam Mohammadi-Ivatloo, Mousa Mohammadpourfard |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 355 p. 157 illus., 143 illus. in color.) |
Disciplina |
333.794
621.042 |
Soggetto topico |
Renewable energy resources
Power electronics Energy storage Energy systems Renewable and Green Energy Power Electronics, Electrical Machines and Networks Energy Storage Energy Systems |
ISBN | 3-030-42420-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Definition of multi-generation systems.-Economic and environmental benefits of renewable energy sources in combined cooling, heating, potable water, hydrogen, and power generation systems -- Selection of cost-effective and energy-efficient storages with respect to uncertain nature of renewable energy resources and variations of demands -- Solar powered combined cooling, heating, potable water, hydrogen, and power generation systems with Application of ice storage/molten salt/batteries/electric and hydrogen vehicles -- Utilization of geothermal heat reservoirs of abandoned oil and gas wells for seawater purification and heat cool/hydrogen/power generation taking into account thermal energy storage systems such as molten salt -- Application of hydro potential in seawater desalination, hydrogen and power generation facilities without and with application of pumped storage -- Bio-fueled poly-generation of heat, power and fresh water production system considering advanced adiabatic compressed air energy storage -- Information gap decision theory for risk-aversion and risk-seeker decision making processes in solar multi-generation systems -- Monte Carlo simulations for sizing ice cold thermal energy storage in solar powered trigeneration microgrids -- Point estimation method for modeling intermittency of solar irradiations in molten salt integrated solar poly-generation plants -- Fuzzy scenario based stochastic programming approach for making robust decision in operation of biomass fired multi-generation plants -- Game theory application for finding optimal operating point of multi-production system under fluctuations of renewables and various load levels. . |
Record Nr. | UNINA-9910411934503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|