top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Active building energy systems : operation and control / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo, editors
Active building energy systems : operation and control / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (394 pages)
Disciplina 720.472
Collana Green energy and technology
Soggetto topico Architecture and energy conservation
Buildings - Energy conservation
Renewable energy sources
ISBN 3-030-79742-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910568255703321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks
Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks
Autore Daneshvar Mohammadreza
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (547 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
ZareKazem
Collana IEEE Press Series on Power and Energy Systems Ser.
ISBN 1-119-86216-7
1-119-86213-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter.
6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References.
Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential.
9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage.
11.8.3 Second Stage.
Record Nr. UNINA-9910632500803321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coordinated operation and planning of modern heat and electricity incorporated networks / / edited by Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo and Kazem Zare
Coordinated operation and planning of modern heat and electricity incorporated networks / / edited by Mohammadreza Daneshvar, Behnam Mohammadi-Ivatloo and Kazem Zare
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023]
Descrizione fisica 1 online resource (547 pages)
Disciplina 621.31
Collana IEEE Press series on power and energy systems
Soggetto topico Electric power systems - Planning
Heating from central stations
Electric power systems
ISBN 1-119-86216-7
1-119-86213-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1 Introduction -- 1.2 Reliability and Resilience of Modern Energy Grids -- 1.3 Renewable Energy Availability in Modern Energy Grids -- 1.4 Modern Multi-Carrier Energy Grids -- 1.5 Challenges and Opportunities of Modern Energy Grids -- 1.6 Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1 Introduction -- 2.2 Traditional Energy Systems -- 2.2.1 Electricity Grid -- 2.2.2 Gas Grid -- 2.2.3 Heating and Cooling Grid -- 2.3 Background of Multi-Carrier Energy Systems -- 2.3.1 Distributed Energy Resources Background -- 2.3.2 Cogeneration and Trigeneration Background -- 2.3.3 Quad Generation -- 2.4 The Definition of Multi-Carrier Energy Grids -- 2.5 Benefits of Multi-Carrier Energy Grids -- 2.6 Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7 Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1 Introduction -- 3.2 Multi-Dimension Energy Networks -- 3.3 Benefits of MDENs -- 3.3.1 Enhancing System Efficiency -- 3.3.2 Decarbonization -- 3.3.3 Reducing System Operation Cost -- 3.3.4 Improving System Flexibility and Reliability -- 3.4 Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1 Technology Advancements -- 3.4.2 Policy-Regulatory-Societal Framework -- 3.5 Coordinated Operation of Modern MDENs -- 3.5.1 Technologies -- 3.5.1.1 Enhanced Optimization Tools and Methods -- 3.5.1.2 Improved Forecasting Tools -- 3.5.2 Markets -- 3.5.2.1 Real-time Market Mechanisms -- 3.5.2.2 Peer-to-Peer Market Mechanisms -- 3.6 Coordinated Planning of Modern MDENs.
3.7 Future Plans for Increasing RERs and MDENs -- 3.8 Challenges -- 3.9 Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy Networks -- 4.3 Infrastructure of Modern Multi-Dimensional Energy -- 4.4 Modeling Review -- 4.5 Integrated Energy Management System -- 4.6 Energy Conversion -- 4.7 Economic and Environmental Impact -- 4.8 Future Energy Systems -- 4.9 Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1 Introduction -- 5.2 Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3 Energy Carriers and Elements of EH -- 5.3.1 Combined Heat and Power Technology -- 5.3.2 Power to Gas Technology -- 5.3.3 Compressed Air Energy Storage Technology -- 5.3.4 Water Desalination Unit -- 5.3.5 Plug-in Hybrid Electric Vehicles -- 5.4 Advantages of the EH System -- 5.4.1 Reliability Improvement -- 5.4.2 Flexibility Improvement -- 5.4.3 Operation Cost Reduction -- 5.4.4 Emissions Mitigation -- 5.5 Applications of the EH System -- 5.5.1 Residential Buildings -- 5.5.2 Commercial Buildings -- 5.5.3 Industrial Factories -- 5.5.4 Agricultural Sector -- 5.6 Challenges and Opportunities -- 5.6.1 Technical Point of View -- 5.6.2 Economic Point of View -- 5.6.3 Environment Point of View -- 5.6.4 Social Point of View -- 5.7 The Role of DSM Programs in the EH System -- 5.7.1 Demand Response Programs -- 5.7.2 Energy Efficiency Programs -- 5.8 Management Methods of the EH System -- 5.9 Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1 Introduction -- 6.1.1 Scope of the Chapter.
6.1.2 Literature Review -- 6.1.3 Research Gap and Contributions of This Chapter -- 6.1.4 Organization of the Chapter -- 6.2 Proposed Framework -- 6.2.1 Illustration of the Proposed Framework -- 6.2.2 Assumptions of the Attack Framework -- 6.3 Problem Formulation -- 6.3.1 Objective Functions of the Attack Framework -- 6.3.2 Technical Constraints -- 6.3.2.1 Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2 Constraints Related to Thermal Units and CHP Units -- 6.3.2.3 Constraints Related to Wind Turbines -- 6.3.2.4 Constraints Related to PV Modules -- 6.3.2.5 Power and Heat Balance Constraints -- 6.3.2.6 Rest of System& -- rsquo -- s Constraints -- 6.4 Case Study and Simulation Results -- 6.4.1 Utilized Solver -- 6.4.2 Case Study -- 6.4.3 Investigated Scenarios of Cyberattacks -- 6.4.4 Numerical Results and Analysis -- 6.4.4.1 Elaboration of Results Associated with Scenario I -- 6.4.4.2 Elaboration of Results Associated with Scenario II -- 6.4.4.3 Elaboration of Results Associated with Scenario III -- 6.5 Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1 Introduction -- 7.2 Application of Machine Learning in Power and Energy Networks -- 7.3 Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4 Cooperative UAVs for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1 Network Topology -- 7.4.2 Solar Power Harvesting Model -- 7.4.3 SUAV´s Energy Outage -- 7.4.4 Mission Success Metric -- 7.4.5 Learning Strategy -- 7.4.6 Convergence Analysis -- 7.5 Simulation Results -- 7.6 Conclusions -- References.
Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Optimal Operation and Planning -- 8.3.1 Optimization in Incorporated Energy Networks -- 8.3.2 Stochastic Modelling -- 8.3.3 Objective Function -- 8.4 Components and Constraints -- 8.4.1 Combined Heat and Power by Waste to Energy -- 8.4.2 Photovoltaic -- 8.4.3 Wind Turbine -- 8.4.4 Ground Source Heat Pump -- 8.4.5 Boiler -- 8.4.6 Heat Storage -- 8.4.7 Heat and Electricity Demand -- 8.5 Incorporated Heat and Electricity Structure -- 8.6 Case Study -- 8.7 Demand Profile -- 8.8 Economic and Environmental Features -- 8.9 Result and Discussion -- 8.10 Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1 Introduction -- 9.2 Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1 Loads/Services -- 9.2.1.1 Electrical Loads -- 9.2.1.2 Thermal Loads -- 9.2.1.3 Thermal Comfort -- 9.2.2 Equipment -- 9.2.2.1 Resources -- 9.2.2.2 Storages -- 9.2.3 Buildings/Smart Homes -- 9.2.4 Heat and Electricity Incorporated Network Operator -- 9.2.5 Different Layers/Networks and Their Connection -- 9.3 Uncertainties -- 9.4 Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1 Definition of Optimal Operation -- 9.4.2 Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3 Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4 Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1 Internal Potential -- 9.4.4.2 External Potential.
9.5 Market/Incentives -- 9.5.1 Energy Markets -- 9.5.2 Ancillary Services Market -- 9.5.3 Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4 Offering Strategy -- 9.6 Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7 Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1 Introduction -- 10.2 CHEM Modeling -- 10.2.1 CHEM Structure -- 10.2.2 Modeling for Heat Network -- 10.2.2.1 District Heating Network Background -- 10.2.2.2 Nodal Flow Balance -- 10.2.2.3 Calculation of Heat Energy -- 10.2.2.4 Mixing Equation for Temperature -- 10.2.2.5 Heat Dynamics and Loss -- 10.2.3 Indoor Temperature Control -- 10.2.4 Price-based Demand Response -- 10.3 Coordinated Optimization of CHEM -- 10.3.1 Objective Function -- 10.3.2 Operational Constraints -- 10.3.3 Solution Method -- 10.4 Case Studies -- 10.4.1 Simulation Test Setup -- 10.4.1.1 33-bus CHEM -- 10.4.1.2 69-bus CHEM -- 10.4.2 Discussions on Simulation Results -- 10.4.2.1 33-bus CHEM -- 10.4.2.2 69-bus CHEM -- 10.4.3 Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1 Why Joint Heat-Power Flexibility? -- 11.2 Literature Review -- 11.3 Intelligent Heating Systems -- 11.4 Flexibility Potentials of Heating Systems -- 11.5 Heat Controllers -- 11.6 Thermal Dynamics of Buildings -- 11.7 Economic Heat Controller in Dynamic Electricity Market -- 11.7.1 Objective Function of EMPC -- 11.7.2 Case Study of EMPC -- 11.8 Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1 Objective Function of SEMPC -- 11.8.2 First Stage.
11.8.3 Second Stage.
Record Nr. UNINA-9910677354803321
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Demand-Side Peer-to-Peer Energy Trading / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo
Demand-Side Peer-to-Peer Energy Trading / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (222 pages)
Disciplina 929.374
Collana Green Energy and Technology
Soggetto topico Energy policy
Energy and state
Electric power distribution
Renewable energy sources
Energy Policy, Economics and Management
Energy Grids and Networks
Energy System Transformation
Renewable Energy
ISBN 3-031-35233-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Overview of the Peer-to-Peer (P2P) Transactions and Transactive Energy (TE) Concepts, Challenges, and Outlook -- Chapter 2. The Role and Position of P2P and TE in Worldwide Energy Evolution -- Looking at P2P Transactions and TE Through the Lens of Sharing Economy and Digital Economy -- Chapter 3. TE Technologies, Standards, and Communication Protocols -- Chapter 4. Policy, Regulation, and Market Issues in P2P Transactions -- Chapter 5. Pilots and Demonstrators Around the World -- Chapter 6. Cybersecurity and Data Privacy Issues in P2P Transactions -- Chapter 7. Application of Artificial Intelligence and Machine Learning Approaches in P2P -- Chapter 8. Transactions -- Chapter 9. Long-Term Effects of P2P Transactions on Energy Systems -- Chapter 10. Participation of the Demand-Side Agents in Ancillary Services via P2P Transactions -- Chapter 11. The Cryptocurrencies and Their Role in Future Energy Transactions -- Chapter 12. Blockchain-based TE Platform for Energy Transactions -- Chapter 13. Distributed Optimization Applications to P2P Trading -- Chapter 14. Utilizing Shared Energy Storage in P2P Trading.
Record Nr. UNINA-9910736978103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (250 pages)
Disciplina 629.286
Collana Green energy and technology
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 3-031-05909-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Standardised Domestic EV Smart Charging for Interoperable Demand Side Response: PAS 1878 and 1879 -- 1.1 Introduction -- 1.1.1 Purpose of Demand-Side Response -- 1.1.2 Status Quo, Challenges and Outlook -- 1.1.3 Assumptions of the Standardised Framework -- 1.1.4 Overview of Operation -- 1.1.5 Underpinning Principles -- 1.1.6 Scope -- 1.2 System Architecture -- 1.2.1 Functional Architecture -- 1.2.1.1 Compatibility with International Standards -- 1.2.1.2 Key Requirements -- 1.2.2 Descriptions of Functional Devices and Entities -- 1.2.2.1 DSR Service Provider (DSRSP) -- 1.2.2.2 Customer Energy Manager (CEM) -- 1.2.2.3 Home Energy Management System (HEMS) -- 1.2.2.4 Chargepoint (The ESA Functionality) -- 1.2.2.5 Chargepoint Manufacturer -- 1.2.2.6 Electric Vehicle (EV) -- 1.2.2.7 System Operators and Market Participants (SOMPs) -- 1.2.2.8 Electricity Supplier -- 1.2.2.9 National Electricity Regulator -- 1.2.3 Descriptions of Interfaces -- 1.2.3.1 Interface A -- 1.2.3.2 Interface B -- 1.2.3.3 Manufacturer Interface -- 1.2.3.4 Interface C -- 1.2.3.5 Interface M -- 1.2.3.6 External System Interface -- 1.2.3.7 Chargepoint and EV Interface -- 1.3 Operation Framework -- 1.3.1 Operation Process and DSR Modes -- 1.3.1.1 (a) Consumer Registration with the DSRSP -- 1.3.1.2 (b) Discovery, Authentication and Device Registration -- 1.3.1.3 (c) Initialisation -- 1.3.1.4 (d) Normal Operation -- 1.3.1.5 (e) De-registration -- 1.3.2 Power Profiles for DSR -- 1.3.2.1 Flexibility Offers as Power Profiles -- 1.3.2.2 Frequency Response Indicator -- 1.3.2.3 Information Required for Power Profiles -- 1.3.2.4 Power Reporting -- 1.3.3 Cyber Security Approach -- 1.4 EV Smart Charging for DSR Services -- 1.4.1 Mapping to IEC/ISO Standards for EVs.
1.4.2 Example Use Case: EV Implementation for DSR Services -- 1.4.2.1 Registration -- 1.4.2.2 Normal Operation -- 1.4.2.3 De-registration -- Bibliography -- 2 The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications -- 2.1 Introduction -- 2.2 Battery Management System (BMS) -- 2.3 Battery Fault Detection -- 2.4 Battery State-of-Function Estimation -- 2.4.1 Battery SoH Estimation -- 2.4.2 Battery SoC Estimation -- 2.5 Conclusions -- References -- 3 Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques -- 3.1 Introduction -- 3.1.1 Electric Vehicles -- 3.1.1.1 Taxonomy of EVs -- 3.1.1.2 EV Integration's Benefits -- 3.1.1.3 Challenges and Problems of EVs High Penetration -- 3.1.2 Data Challenges of the High Penetration of the EVs -- 3.1.3 Energy Management of the EVs' Smart Charging -- 3.1.3.1 Concepts and Applications -- 3.1.3.2 Challenges and Opportunities -- 3.1.4 Literature Review on EV Integration -- 3.2 Identification of EV Charging Patterns -- 3.2.1 Clustering Concept and Principles -- 3.2.1.1 Concept of the Clustering -- 3.2.1.2 Principles of the Clustering -- 3.2.2 Clustering of the Charging Patterns -- 3.2.3 Utilization of ML Algorithms for Clustering the Charging Patterns -- 3.2.3.1 Unsupervised Learning -- 3.2.3.2 Supervised Learning -- 3.2.4 ML-Based Approach to Cluster the EV Charging Behaviors -- 3.2.4.1 Preprocessing -- 3.2.4.2 EV's Charging Behavior Clustering Using K-Means Algorithm -- 3.2.4.3 K-NN Classification for EV Charging Behavior -- 3.2.5 A Toy Example -- 3.2.6 Application of Charging Pattern Recognition in Smart Charging -- 3.3 Status Quo, Challenges, and Outlook -- 3.4 Concluding Remarks -- References -- 4 Cybersecurity and Data Privacy Issues of Electric Vehicles Smart Charging in Smart Microgrids -- 4.1 Introduction.
4.2 Cyberattacks and Security Issues of EVs -- 4.2.1 Various Attacks on EVs -- 4.2.1.1 Attacks on Control Systems -- 4.2.1.2 Attacks on Driving System Parts -- 4.2.1.3 Attacks on V2X Communication -- 4.2.2 The Vulnerability of EV Charging Stations to Cyberattacks -- 4.2.2.1 Web-Based Vulnerabilities -- 4.2.2.2 Human-Machine Interface Vulnerabilities and Physical Access Points -- 4.2.2.3 The Vulnerability of Servers -- 4.2.2.4 The Vulnerability of Smartphones -- 4.2.2.5 The Vulnerability of Building Energy Management System and Grid Interface -- 4.2.2.6 The Vulnerability of Original Equipment Manufacturers/Vendors -- 4.2.3 Cybersecurity Challenges in EV Communication -- 4.2.3.1 Limited Connectivity -- 4.2.3.2 Limited Computational Performance -- 4.2.3.3 The Scenarios and Threats of Unpredictable Attacks -- 4.2.3.4 Critical Hazard to the Life of Drivers and Passengers -- 4.2.4 Data Privacy Challenges in Smart EV Networks -- 4.2.5 Classifying the Cybersecurity Threats of On-Board Charging -- 4.2.5.1 Modification -- 4.2.5.2 Interference -- 4.2.5.3 Interruption -- 4.2.5.4 Interception -- 4.2.6 Risk Assessment -- 4.2.7 The Review of Attacker-Defender Models -- 4.2.8 Cybersecurity Requirements -- 4.2.8.1 The Security Goals for EV Ecosystem -- 4.2.8.2 Security Requirements Based on NISTIR 7628 -- 4.3 Status Quo, Challenges, and Outlook -- 4.4 Learned Lessons and Concluding Remarks -- References -- 5 Evaluation of Cyberattacks in Distribution Network with Electric Vehicle Charging Infrastructure -- 5.1 Introduction -- 5.2 Status Quo, Challenges, and Outlook -- 5.2.1 EV2EVSE -- 5.2.2 EVSE2EVSE -- 5.2.3 EV2EV -- 5.3 Related Work -- 5.4 Cyberattack Model -- 5.4.1 Response Model -- 5.5 Experimental Results -- 5.6 Conclusion -- References -- 6 Electric Vehicle Services to Support the Power Grid -- 6.1 Introduction.
6.2 Classification of EV Services Presentable to the Power Grid -- 6.2.1 EV's Active and Reactive Power Support Services -- 6.2.1.1 Frequency Control -- 6.2.1.2 Load Variance Minimization, Peak Shaving, and Valley Filling -- 6.2.1.3 Loads Restoration -- 6.2.1.4 Loss Minimization -- 6.2.1.5 Voltage Control -- 6.2.2 Support Services for Renewable Energy Sources Integration -- 6.3 Combination Capability of EVs' Different Services -- 6.4 Mathematical Modeling of EVs' Charging and Discharging Optimization Problem in the Power System -- 6.4.1 Constraints on EVs' Charging and Discharging Optimization Problem -- 6.4.1.1 EV Constraints -- 6.4.1.2 Network Constraints -- 6.4.2 Mathematical Models and Problem-Solving Methods for Optimizing Charge and Discharge of EVs -- 6.5 Current Status, Challenges, and Outlook -- 6.6 Conclusion -- References -- 7 Smart Charging of EVs to Harvest Flexibility for PVs -- 7.1 Status Quo, Challenges and Outlook -- 7.2 Introduction -- 7.2.1 Background and Literature Review -- 7.2.2 Contributions -- 7.2.3 Chapter Organization -- 7.3 Determination of Optimal EV Demand Profile -- 7.3.1 Assumptions -- 7.3.2 Mathematical Formulation -- 7.4 Numerical Studies -- 7.4.1 Data -- 7.4.2 Case-I: EVs Profile Optimization, Without Considering PVs -- 7.4.3 Case-II: EVs Profile Optimization, Considering PVs -- 7.4.4 Comparative Analysis of Cases -- 7.5 Conclusion -- Bibliography -- 8 A Robust Optimization-Based Model for Smart Charging of PEV Under Multiple Uncertainties -- 8.1 Introduction -- 8.2 Mathematical Representation of the Deterministic PEV Smart Charging -- 8.2.1 Constraints -- 8.3 The Proposed IGDT-Based Model for Robust Smart PEV Charging -- 8.3.1 The Information Gap Decision Theory (IGDT) -- 8.3.2 The Proposed IGDT-Based PEV Smart Charging -- 8.3.3 Multi-objective Particle Swarm Optimization (MOPSO).
8.3.3.1 Concise Review of PSO Algorithm -- 8.3.3.2 The Concept of Dominance in a Multi-objective Problem -- 8.3.3.3 The MOPSO Step-by-Step Implementation -- 8.3.4 Fuzzy Satisfaction Method -- 8.4 Numerical Results -- 8.4.1 Input Data -- 8.4.2 The SOC and Power Analysis -- 8.4.3 Robustness Assessment -- 8.5 Conclusion -- References -- 9 The Role of Smart Electric Vehicle Charging in Optimal Decision-making of the Active Distribution Network -- Nomenclature -- Sets and Indices -- Parameters -- Variables -- Binary Variables -- 9.1 Introduction -- 9.2 Status Quo, Challenges, and Outlook -- 9.3 Formulation -- 9.3.1 Hybrid Stochastic Programming/Robust Optimization Model -- 9.3.2 Electric Vehicles -- 9.3.3 Combined Heat and Power Unit -- 9.3.4 Solar Distributed Generations -- 9.3.5 Distribution System -- 9.3.6 The Objective Function -- 9.4 Results and Discussions -- 9.5 Conclusion -- References -- 10 Operational Challenges of Electric Vehicle Smart Charging -- 10.1 Status Quo, Challenges, and Outlook -- 10.2 Definition -- 10.3 Electric Vehicle Technology -- 10.4 Electric Vehicles Charging -- 10.4.1 Charging Standards for Electric Vehicles -- 10.4.2 Charging Speed and Duration -- 10.4.3 Electric Vehicle Smart Charging (EVSC) -- 10.5 Control of EVSC: Centralized and Decentralized Control Approaches -- 10.6 Benefits of EVSC -- 10.7 Main Challenges of Using EVSCs -- 10.7.1 Connectivity and Infrastructure in EVSC -- 10.7.2 The Minimum Requirements for EVSC -- 10.8 Conclusion -- References -- Index.
Record Nr. UNINA-9910592991503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy systems transition : digitalization, decarbonization, decentralization and democratization / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo
Energy systems transition : digitalization, decarbonization, decentralization and democratization / / Vahid Vahidinasab and Behnam Mohammadi-Ivatloo
Autore Vahidinasab Vahid
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (246 pages)
Disciplina 333.7916
Collana Power Systems
Soggetto topico Energy transition
Renewable energy sources
ISBN 3-031-22186-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Chapter 1: Energy Systems Decarbonization: Design Optimization of a Commercial Building MG System Considering High Penetration... -- 1.1 Introduction -- 1.2 Description of the Proposed Commercial MG System -- 1.2.1 PV -- 1.2.2 Wind Turbine -- 1.2.3 Fuel Cell -- 1.2.4 Electrical Energy Storage -- 1.2.5 Loads -- 1.3 Problem Formulation -- 1.3.1 Objective Function -- 1.3.1.1 The NPC of Each Applied DG -- 1.3.1.2 Fuel Cost -- 1.3.1.3 Penalty for CO2 Emission -- 1.3.1.4 Penalty for Interrupted Loads -- 1.3.2 Constraints -- 1.3.2.1 Electrical Power Balance -- 1.3.2.2 Operational of Each Type of DG -- 1.3.2.3 Energy Storage Constraint -- 1.3.2.4 Energy System Decarbonization -- 1.3.2.5 Reliability Constraint -- 1.4 MG Strategy to Supply Electrical Demands -- 1.5 Simulation Results and Discussion -- 1.5.1 Optimization of the Commercial MG -- 1.5.2 Impact of RES and BESS Utilization on System Decarbonization -- 1.5.3 Considering Load Growth in the MG -- 1.6 Conclusion -- References -- Chapter 2: Data Analytics Applications in Digital Energy System Operation -- 2.1 Introduction -- 2.2 Existing Challenges and Literature Review -- 2.3 Data Processing Tools and Techniques -- 2.3.1 Preprocessing and Data Quality -- 2.3.2 Machine Learning Techniques -- 2.4 Big Data Analysis and Security -- 2.4.1 Big Data Characteristics -- 2.4.2 Data Generation and Acquisition -- 2.4.3 Data Storage -- 2.4.4 Data Processing -- 2.5 Data Security in Smart Grids -- 2.5.1 Forecasting Techniques in Data Security -- 2.6 Applications of Data Analysis in the Digital Operation -- 2.7 Conclusion -- References -- Chapter 3: A New Stable Solar System for Electricity, Cooling, Heating, and Potable Water Production in Sunny Coastal Areas -- 3.1 Introduction -- 3.2 System Description -- 3.3 Modeling Equations -- 3.3.1 Thermodynamic Analysis.
3.3.2 Exergoeconomic Analysis -- 3.3.3 Solar Energy Collector (SEC) -- 3.3.4 Molten Salt Heat Storage Tanks (MSHST) -- 3.3.5 Performance Criteria -- 3.3.6 Optimization -- 3.3.7 Verification -- 3.4 Results and Discussion -- 3.4.1 Base Case Study -- 3.4.2 Parametric Study -- 3.4.3 Optimization Results -- 3.5 Conclusions -- References -- Chapter 4: Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization -- 4.1 Introduction -- 4.2 System Description -- 4.2.1 Organic Rankine Cycle -- 4.2.2 Carbon Capture Unit -- 4.2.3 Water Electrolyzer Subsystem -- 4.2.4 Methanol Synthesis Unit -- 4.2.5 Direct Methanol Fuel Cell Subsystem -- 4.3 System Analysis -- 4.4 Results and Discussion -- 4.4.1 Base Case -- 4.4.2 Parametric Study -- 4.5 Conclusions -- References -- Chapter 5: Protection and Monitoring of Digital Energy Systems Operation -- 5.1 Introduction -- 5.2 Overview of Protection Key Points and Definitions -- 5.3 Overview of Microgrid Protection Bottlenecks -- 5.3.1 Loss of Coordination -- 5.3.2 Protection Under-reaching, Desensitization, or Blinding -- 5.3.3 False Tripping (Nuisance and Sympathetic) -- 5.3.4 Auto-reclosers -- 5.3.5 Sectionalizers -- 5.3.6 Unintentional Islanding -- 5.3.7 Heavily Power Electronic-Based Grids -- 5.4 IBR Control Schemes and Grid Protection -- 5.4.1 Solutions to IBR Protection Issues -- 5.4.1.1 Emulation of Synchronous-Generator Fault Response -- 5.4.1.2 Active Protection Methods -- 5.4.1.3 Source-Independent Relays -- 5.4.1.4 Comparison of the Solutions to Protection Methods -- 5.5 Predictive Wide-Area Monitoring, Protection, and Control -- 5.5.1 Cascading Failures in Large Power Systems -- 5.5.2 Estimation Based on Synchronized Measurements -- 5.5.3 Protective Wide-Area Monitoring Structure -- 5.6 IoT, Auxiliary Protection, and Monitoring Methods.
5.6.1 IoT in Protection -- 5.7 Artificial Intelligence-Based Protection -- 5.7.1 ANN-Based Relays -- 5.7.2 Relays Based on SVM -- 5.7.3 Fuzzy Logic -- 5.8 Conclusion -- References -- Chapter 6: Optimizing Wind Power Participation in Day-Ahead Electricity Market Using Meta-heuristic Optimization Algorithms -- 6.1 Introduction -- 6.2 Electricity Market Modeling -- 6.3 Calculation of Uncertainty in Wind Power -- 6.4 Main Focus of the Chapter -- 6.5 Results of Analysis -- 6.5.1 Meta-heuristic Optimization Algorithms Application in Minimizing Total Expected Costs -- 6.6 Future Work -- 6.7 Conclusion -- References -- Chapter 7: Robust Energy Management of Virtual Energy Hub Considering Intelligent Parking Lots for the Plug-In Hybrid Electric... -- 7.1 Introduction -- 7.1.1 Background and Motivations -- 7.1.2 Related Works -- 7.1.3 Novelties and Contributions -- 7.2 Problem Modeling -- 7.2.1 Objective Function -- 7.2.2 CHP -- 7.2.3 Boiler -- 7.2.4 Wind Farm -- 7.2.5 Intelligent Parking Lot -- 7.2.6 Thermal Buffer Tank -- 7.2.7 Electrical and Thermal Markets -- 7.2.8 End Consumers -- 7.2.9 Demand Response -- 7.2.10 Power Balance -- 7.2.11 Robust Optimization -- 7.3 Simulation -- 7.3.1 Input Data -- 7.3.2 Case Study 1 -- 7.3.3 Case Study 2 -- 7.4 Conclusion -- References -- Chapter 8: Hybrid Interval-Stochastic Optimal Operation Framework of a Multi-carrier Microgrid in the Presence of Hybrid Elect... -- 8.1 Introduction -- 8.2 Problem Description -- 8.3 Problem Formulation -- 8.3.1 Stochastic-Based Proposed Model -- 8.3.1.1 Objective Function -- 8.3.1.2 Gas-Based Non-renewable Energy Source Constraints -- 8.3.1.3 Renewable Energy Source Constraints -- 8.3.1.4 Hydrogen Energy-Based Source Constraints -- 8.3.1.5 Cooling Energy Constraints -- 8.3.1.6 Energy Storage System Constraints -- 8.3.1.7 Heat Storage System Constraints.
8.3.1.8 Ice Storage System Constraints -- 8.3.1.9 Hydrogen Storage System Constraints -- 8.3.1.10 Electric Vehicle Intelligent Parking Lot Constraints -- 8.3.1.11 All Energy Balance Constraints -- 8.3.2 Interval-Based Stochastic Proposed Model -- 8.3.2.1 General Model Specifications -- 8.3.2.2 Weighted Sum and Fuzzy Solution Approaches -- 8.4 Simulation Results -- 8.4.1 All Input Data -- 8.4.2 Case Studies and Analysis of Results -- 8.4.2.1 Stochastic-Based Simulation Results -- 8.4.2.2 Interval-Based Simulation Results -- 8.5 Conclusions -- References -- Index.
Record Nr. UNINA-9910672435903321
Vahidinasab Vahid  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Food-Energy-Water Nexus Resilience and Sustainable Development : Decision-Making Methods, Planning, and Trade-Off Analysis / / edited by Somayeh Asadi, Behnam Mohammadi-Ivatloo
Food-Energy-Water Nexus Resilience and Sustainable Development : Decision-Making Methods, Planning, and Trade-Off Analysis / / edited by Somayeh Asadi, Behnam Mohammadi-Ivatloo
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 358 p. 136 illus., 120 illus. in color.)
Disciplina 338.927
Soggetto topico Renewable energy resources
Environmental management
Agriculture
Sustainable development
Sustainable architecture
Energy security
Renewable and Green Energy
Water Policy/Water Governance/Water Management
Sustainable Development
Sustainable Architecture/Green Buildings
Energy Security
ISBN 3-030-40052-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to FEW nexus -- Resiliency and sustainability definition in FEW systems -- Planning of interdependent energy, water and food systems -- Decision-making tools for optimal operation of FEW systems -- Modeling of EW and FEW systems -- Sustainable design of EW and FEW systems -- Impact of renewable energy resources in EW and FEW systems -- Renewable energy based water desalination systems -- Net zero energy buildings: design and operation -- Net zero water and waste buildings: design and operation -- Renewable energy systems for agriculture applications -- Security interactions of food, water and energy systems -- Challenges and opportunities of FEW nexus in the sustainable development of different countries -- Impact of FEW nexus perspectives on managing agricultural droughts -- An integrated modeling approach for FEW nexus management.
Record Nr. UNINA-9910410022403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green Hydrogen in Power Systems / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, Jeng Shiun Lim
Green Hydrogen in Power Systems / / edited by Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, Jeng Shiun Lim
Autore Vahidinasab Vahid
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (363 pages)
Disciplina 621.042
Altri autori (Persone) Mohammadi-IvatlooBehnam
Shiun LimJeng
Collana Green Energy and Technology
Soggetto topico Renewable energy sources
Hydrogen as fuel
Energy storage
Electric power distribution
Energy policy
Renewable Energy
Hydrogen Energy
Mechanical and Thermal Energy Storage
Energy Grids and Networks
Energy System Transformation
ISBN 3-031-52429-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Green Hydrogen (GH2) strategies around the world for a deep decarbonization -- The role and position of GH2 in worldwide power & energy evolution -- Looking at GH2 through the lens of decarbonized economy -- Role of GH2 in achieving net-zero carbon emissions -- GH2 production: technologies and standards -- GH2 networks: technologies and standards -- GH2 storage: technologies and standards -- Roles of GH2 in power systems flexibility -- Power systems planning considering GH2 integration -- Policy and market frameworks -- Technology/User readiness for accelerating GH2 in power systems -- Distributed electrolyzer planning in power systems -- Impacts of distributed GH2 facilities on power system technical characteristics -- Sector-coupling via GH2 -- Life cycle cost assessment of implementing GH2 in power systems -- GH2 supply chain planning for power system -- Energy and exergy analysis for GH2 power system -- Techno-economic analysis for decentralized vs centralized GH2 power system -- Integration of solar PV with GH2 for decentralized power system -- The GH2 potential in different regions considering power system constraints -- Pilots and demonstrators around the world.
Record Nr. UNINA-9910845088303321
Vahidinasab Vahid  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Grid modernization - future energy network infrastructure : overview, uncertainties, Modelling, optimization, and analysis / / Mohammadreza Daneshvar, Somayeh Asadi, Behnam Mohammadi-Ivatloo
Grid modernization - future energy network infrastructure : overview, uncertainties, Modelling, optimization, and analysis / / Mohammadreza Daneshvar, Somayeh Asadi, Behnam Mohammadi-Ivatloo
Autore Behnam Mohammadi-Ivatloo
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XVI, 280 p. 75 illus., 74 illus. in color.)
Disciplina 621.319
Collana Power Systems
Soggetto topico Smart power grids
ISBN 3-030-64099-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Overview of the grid modernization and smart grids -- Modernizing the energy customer side -- Technical and theoretical analysis of the future energy network modernization from various aspects -- Advanced communication protocols in modernizing of the future energy grids -- Energy trading possibilities in the modern multi carrier energy networks -- Probabilistic modeling and optimizing of the modern grids with a full share of RERs: robustness and opportunistic analyzing of the system -- An application of the General Algebraic Modeling System (GAMS) in the optimization of the modern grids.
Record Nr. UNINA-9910484837603321
Behnam Mohammadi-Ivatloo  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems : Design, Modeling and Robust Optimization / / edited by Farkhondeh Jabari, Behnam Mohammadi-Ivatloo, Mousa Mohammadpourfard
Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems : Design, Modeling and Robust Optimization / / edited by Farkhondeh Jabari, Behnam Mohammadi-Ivatloo, Mousa Mohammadpourfard
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 355 p. 157 illus., 143 illus. in color.)
Disciplina 333.794
621.042
Soggetto topico Renewable energy resources
Power electronics
Energy storage
Energy systems
Renewable and Green Energy
Power Electronics, Electrical Machines and Networks
Energy Storage
Energy Systems
ISBN 3-030-42420-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Definition of multi-generation systems.-Economic and environmental benefits of renewable energy sources in combined cooling, heating, potable water, hydrogen, and power generation systems -- Selection of cost-effective and energy-efficient storages with respect to uncertain nature of renewable energy resources and variations of demands -- Solar powered combined cooling, heating, potable water, hydrogen, and power generation systems with Application of ice storage/molten salt/batteries/electric and hydrogen vehicles -- Utilization of geothermal heat reservoirs of abandoned oil and gas wells for seawater purification and heat cool/hydrogen/power generation taking into account thermal energy storage systems such as molten salt -- Application of hydro potential in seawater desalination, hydrogen and power generation facilities without and with application of pumped storage -- Bio-fueled poly-generation of heat, power and fresh water production system considering advanced adiabatic compressed air energy storage -- Information gap decision theory for risk-aversion and risk-seeker decision making processes in solar multi-generation systems -- Monte Carlo simulations for sizing ice cold thermal energy storage in solar powered trigeneration microgrids -- Point estimation method for modeling intermittency of solar irradiations in molten salt integrated solar poly-generation plants -- Fuzzy scenario based stochastic programming approach for making robust decision in operation of biomass fired multi-generation plants -- Game theory application for finding optimal operating point of multi-production system under fluctuations of renewables and various load levels. .
Record Nr. UNINA-9910411934503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui