top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910144525003321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNISA-996212478503316
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Extended finite element method for fracture analysis of structures [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 518.25
624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910829884103321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extended finite element method for fracture analysis of structures / / Soheil Mohammadi
Extended finite element method for fracture analysis of structures / / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Malden, MA, : Blackwell Pub., c2008
Descrizione fisica 1 online resource (282 p.)
Disciplina 624.1/76
Soggetto topico Fracture mechanics
Finite element method
ISBN 1-282-37946-1
9786612379468
0-470-69779-2
0-470-69799-7
Classificazione BAU 154f
UF 3150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics
1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy
2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral
2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment
3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation
3.7.2 XFEM discretization
Record Nr. UNINA-9910876992403321
Mohammadi S (Soheil)  
Malden, MA, : Blackwell Pub., c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale biomechanics : theory and applications / / Soheil Mohammadi
Multiscale biomechanics : theory and applications / / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons Ltd., , [2023]
Descrizione fisica 1 online resource (557 pages)
Disciplina 571.43
Soggetto topico Biomechanics
ISBN 1-119-03373-X
1-119-03371-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Multiscale Biomechanics -- Contents -- Preface -- List of Abbreviations -- Part I Introduction -- 1 Introduction -- 1.1 Introduction to Biomechanics -- 1.2 Biology and Biomechanics -- 1.3 Types of Biological Systems -- 1.3.1 Biosolids -- 1.3.2 Biofluids -- 1.3.3 Biomolecules -- 1.3.4 Synthesized Biosystems -- 1.4 Biomechanical Hierarchy -- 1.4.1 Organ Level -- 1.4.2 Tissue Level -- 1.4.3 Cellular and Lower Levels -- 1.4.4 Complex Medical Procedures -- 1.5 Multiscale/Multiphysics Analysis -- 1.6 Scope of the Book -- Part II Analytical and Numerical Bases -- 2 Theoretical Bases of Continuum Mechanics -- 2.1 Introduction -- 2.2 Solid Mechanics -- 2.2.1 Elasticity -- 2.2.2 Plasticity -- 2.2.3 Damage Mechanics -- 2.2.4 Fracture Mechanics -- 2.2.5 Viscoelasticity -- 2.2.6 Poroelasticity -- 2.2.7 Large Deformation -- 2.3 Flow, Convection and Diffusion -- 2.3.1 Thermodynamics -- 2.3.2 Fluid Mechanics -- 2.3.3 Gas Dynamics -- 2.3.4 Diffusion and Convection -- 2.4 Fluid-Structure Interaction -- 2.4.1 Lagrangian and Eulerian Descriptions -- 2.4.2 Fluid-Solid Interface Boundary Conditions -- 2.4.3 Governing Equations in the Eulerian Description -- 2.4.4 Coupled Lagrangian-Eulerian (CLE) -- 2.4.5 Coupled Lagrangian-Lagrangian (CLL) -- 2.4.6 Arbitrary Lagrangian-Eulerian (ALE) -- 3 Numerical Methods -- 3.1 Introduction -- 3.2 Finite Difference Method (FDM) -- 3.2.1 One-Dimensional FDM -- 3.2.2 Higher Order One-Dimensional FDM -- 3.2.3 FDM for Solving Partial Differential Equations -- 3.3 Finite Volume Method (FVM) -- 3.4 Finite Element Method (FEM) -- 3.4.1 Basics of FEM Interpolation -- 3.4.2 FEM Basis Functions/Shape Functions -- 3.4.3 Properties of the Finite Element Interpolation -- 3.4.4 Physical and Parametric Coordinate Systems -- 3.4.5 Main Types of Finite Elements -- 3.4.6 Governing Equations of the Boundary Value Problem.
3.4.7 Numerical Integration -- 3.5 Extended Finite Element Method (XFEM) -- 3.5.1 A Review of XFEM Development -- 3.5.2 Partition of Unity -- 3.5.3 Enrichments -- 3.5.4 Signed Distance Function -- 3.5.5 XFEM Approximation for Cracked Elements -- 3.5.6 Boundary Value Problem for a Cracked Body -- 3.5.7 XFEM Discretisation of the Governing Equation -- 3.5.8 Numerical Integration -- 3.5.9 Selection of Enrichment Nodes for Crack Propagation -- 3.5.10 Incompatible Modes of XFEM Enrichments -- 3.5.11 The Level Set Method for Tracking Moving Boundaries -- 3.5.12 XFEM Tip Enrichments -- 3.5.13 XFEM Enrichment Formulation for Large Deformation Problems -- 3.6 Extended Isogeometric Analysis (XIGA) -- 3.6.1 Introduction -- 3.6.2 Isogeometric Analysis -- 3.6.3 Extended Isogeometric Analysis (XIGA) -- 3.6.4 XIGA Governing Equations -- 3.6.5 Numerical Integration -- 3.7 Meshless Methods -- 3.7.1 Why Going Meshless -- 3.7.2 Meshless Approximations -- 3.7.3 Meshless Solutions for the Boundary Value Problems -- 3.8 Variable Node Element (VNE) -- 4 Multiscale Methods -- 4.1 Introduction -- 4.2 Homogenization Methods -- 4.2.1 Introduction -- 4.2.2 Representative Volume Element (RVE) -- 4.2.3 Mathematical Homogenization -- 4.2.4 Computational Homogenization -- 4.3 Molecular Dynamics (MD) -- 4.3.1 Introduction -- 4.3.2 Statistical Mechanics -- 4.3.3 MD Equations of Motion -- 4.3.4 Models for Atomic Interactions - MD Potentials -- 4.3.5 Measures for Determining the State of MD Systems -- 4.3.6 Stress Computation in MD -- 4.3.7 Molecular Statics -- 4.3.8 Sample MD Simulation of a Polymer -- 4.4 Sequential Multiscale Method -- 4.4.1 Introduction -- 4.4.2 Multiscale Modelling of CNT Reinforced Concrete -- 4.4.3 Molecular Dynamics Simulation of CNTs -- 4.4.4 Simulation of CNT-Reinforced Calcium Silicate Hydrate -- 4.4.5 Micromechanical Simulation of CNT-Reinforced Cement.
4.4.6 Mesoscale Simulation of CNT-Reinforced Concrete -- 4.4.7 Macroscale Simulation of CNT-Reinforced Concrete -- 4.5 Concurrent Multiscale Methods -- 4.5.1 Introduction -- 4.5.2 Quasi-Continuum Method (QC) -- 4.5.3 Bridging Domain Method (BDM) -- 4.5.4 Bridging Scale Method (BSM) -- 4.5.5 Disordered Concurrent Multiscale Method (DCMM) -- 4.5.6 Variable Node Multiscale Method (VNMM) -- 4.5.7 Enriched Multiscale Method (EMM) -- Part III Biomechanical Simulations -- 5 Biomechanics of Soft Tissues -- 5.1 Introduction -- 5.2 Physiology of Soft Tissues -- 5.2.1 Soft Tissues, Skin -- 5.2.2 Artery -- 5.2.3 Heart Leaflet -- 5.2.4 Brain Tissue -- 5.3 Hyperelastic Models of Soft Tissues -- 5.3.1 Introduction -- 5.3.2 Description of Deformation and Definition of Invariants -- 5.3.3 Isotropic neo-Hookean Hyperelastic Model -- 5.3.4 Isotropic Mooney-Rivlin Hyperelastic Model -- 5.3.5 Hyperelastic Models for Multiscale Simulation of Tendon -- 5.3.6 Anisotropic Hyperelastic Models for Fibrous Tissues -- 5.3.7 Polyconvex Undamaged Functions for Fibrous Tissues -- 5.3.8 Damaged Soft Tissue -- 5.4 Multiscale Modelling of Undamaged Tendon -- 5.4.1 Fibril Scale -- 5.4.2 Fibre Scale -- 5.4.3 Tissue Scale -- 5.5 Multiscale Analysis of a Human Aortic Heart Valve -- 5.5.1 Introduction -- 5.5.2 Organ Scale Simulation -- 5.5.3 Simulation in the Tissue Scale -- 5.5.4 Cell Scale Analysis -- 5.6 Modelling of Ligament Damage -- 5.7 Modelling of the Peeling Test: Dissection of the Medial Tissue -- 5.8 Healing in Damaged Soft Tissue -- 5.8.1 Introduction -- 5.8.2 Physical Foundation of Tissue Healing -- 5.8.3 Solution Procedure -- 5.8.4 Numerical Analysis -- 5.9 Hierarchical Multiscale Modelling of a Degraded Arterial Wall -- 5.9.1 Definition of the Problem -- 5.9.2 Multiscale Model -- 5.9.3 Hyperelastic Material Models.
5.9.4 Computational Framework of the Hierarchical Multiscale Homogenization -- 5.9.5 Numerical Results -- 5.10 Multiscale Modelling of the Brain -- 5.10.1 Introduction -- 5.10.2 Biomechanics of the Brain -- 5.10.3 Multiscale Modelling of the Brain (neo-Hookean Model) -- 5.10.4 Viscoelastic Modelling of the Brain -- 6 Biomechanics of Hard Tissues -- 6.1 Introduction -- 6.1.1 Hard Tissues -- 6.1.2 Chemical Composition of Bone -- 6.1.3 Multiscale Structure of Bone -- 6.1.4 Bone Remodelling -- 6.1.5 Contents of the Chapter -- 6.2 Concepts of Fracture Analysis of Hard Tissues -- 6.2.1 Numerical Studies of Bone Fracture -- 6.2.2 Constitutive Response of the Bone -- 6.2.3 Poroelastic Nature of Bone Tissues -- 6.2.4 Plasticity and Damage -- 6.2.5 Hyperelastic Response -- 6.3 Simulation of the Femur Bone at Multiple Scales -- 6.3.1 Microscale Simulation of the Trabecular Bone -- 6.3.2 Two-dimensional XFEM Mesoscale Fracture Simulation of the Cortical Bone -- 6.3.3 Macroscale Simulation of the Femur -- 6.4 Healing in Damaged Hard Tissue -- 6.4.1 Introduction -- 6.4.2 Physical Foundation of Bone Tissue Healing -- 6.4.3 Solution Procedure -- 6.4.4 Numerical Analysis -- 7 Supplementary Topics -- 7.1 Introduction -- 7.2 Shape Memory Alloy (SMA) Stenting of an Artery -- 7.2.1 Stenting Procedures -- 7.2.2 SMA Constitutive Equations -- 7.2.3 Contact Mechanics -- 7.2.4 Modelling of Stenting -- 7.2.5 Basics of Modelling -- 7.3 Multiscale Modelling of the Eye -- 7.4 Pulsatile Blood Flow in the Aorta -- 7.4.1 Description of the Problem -- 7.5 Shape Memory Polymer Drug Delivery System -- 7.6 Artificial Intelligence in Biomechanics -- 7.6.1 Artificial Intelligence and Machine Learning -- 7.6.2 Deep Learning -- 7.6.3 Physics-Informed Neural Networks (PINNs) -- 7.6.4 Biomechanical Applications of Artificial Intelligence -- References -- Index -- EULA.
Record Nr. UNINA-9910830225803321
Mohammadi S (Soheil)  
Hoboken, NJ : , : John Wiley & Sons Ltd., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
XFEM fracture analysis of composites [[electronic resource] /] / Soheil Mohammadi
XFEM fracture analysis of composites [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Descrizione fisica 1 online resource (401 p.)
Disciplina 620.1186
Soggetto topico Composite materials - Fracture
Composite materials - Fatigue
Fracture mechanics
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-118-44338-1
1-283-59297-5
9786613905420
1-118-44337-3
1-118-44330-6
1-118-44331-4
Classificazione SCI041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto XFEM FRACTUREANALYSIS OFCOMPOSITES; Contents; Preface; Nomenclature; 1 Introduction; 1.1 Composite Structures; 1.2 Failures of Composites; 1.2.1 Matrix Cracking; 1.2.2 Delamination; 1.2.3 Fibre/Matrix Debonding; 1.2.4 Fibre Breakage; 1.2.5 Macro Models of Cracking in Composites; 1.3 Crack Analysis; 1.3.1 Local and Non-Local Formulations; 1.3.2 Theoretical Methods for Failure Analysis; 1.4 Analytical Solutions for Composites; 1.4.1 Continuum Models; 1.4.2 Fracture Mechanics of Composites; 1.5 Numerical Techniques; 1.5.1 Boundary Element Method; 1.5.2 Finite Element Method
1.5.3 Adaptive Finite/Discrete Element Method1.5.4 Meshless Methods; 1.5.5 Extended Finite Element Method; 1.5.6 Extended Isogeometric Analysis; 1.5.7 Multiscale Analysis; 1.6 Scope of the Book; 2 Fracture Mechanics, A Review; 2.1 Introduction; 2.2 Basics of Elasticity; 2.2.1 Stress-Strain Relations; 2.2.2 Airy Stress Function; 2.2.3 Complex Stress Functions; 2.3 Basics of LEFM; 2.3.1 Fracture Mechanics; 2.3.2 Infinite Tensile Plate with a Circular Hole; 2.3.3 Infinite Tensile Plate with an Elliptical Hole; 2.3.4 Westergaard Analysis of a Line Crack; 2.3.5 Williams Solution of a Wedge Corner
2.4 Stress Intensity Factor, K2.4.1 Definition of the Stress Intensity Factor; 2.4.2 Examples of Stress Intensity Factors for LEFM; 2.4.3 Griffith Energy Theories; 2.4.4 Mixed Mode Crack Propagation; 2.5 Classical Solution Procedures for K and G; 2.5.1 Displacement Extrapolation/Correlation Method; 2.5.2 Mode I Energy Release Rate; 2.5.3 Mode I Stiffness Derivative/Virtual Crack Model; 2.5.4 Two Virtual Crack Extensions for Mixed Mode Cases; 2.5.5 Single Virtual Crack Extension Based on Displacement Decomposition; 2.6 Quarter Point Singular Elements; 2.7 J Integral; 2.7.1 Generalization of J
2.7.2 Effect of Crack Surface Traction2.7.3 Effect of Body Force; 2.7.4 Equivalent Domain Integral (EDI) Method; 2.7.5 Interaction Integral Method; 2.8 Elastoplastic Fracture Mechanics (EPFM); 2.8.1 Plastic Zone; 2.8.2 Crack-Tip Opening Displacements (CTOD); 2.8.3 J Integral for EPFM; 3 Extended Finite Element Method; 3.1 Introduction; 3.2 Historic Development of XFEM; 3.2.1 A Review of XFEM Development; 3.2.2 A Review of XFEM Composite Analysis; 3.3 Enriched Approximations; 3.3.1 Partition of Unity; 3.3.2 Intrinsic and Extrinsic Enrichments; 3.3.3 Partition of Unity Finite Element Method
3.3.4 MLS Enrichment3.3.5 Generalized Finite Element Method; 3.3.6 Extended Finite Element Method; 3.3.7 Generalized PU Enrichment; 3.4 XFEM Formulation; 3.4.1 Basic XFEM Approximation; 3.4.2 Signed Distance Function; 3.4.3 Modelling the Crack; 3.4.4 Governing Equation; 3.4.5 XFEM Discretization; 3.4.6 Evaluation of Derivatives of Enrichment Functions; 3.4.7 Selection of Nodes for Discontinuity Enrichment; 3.4.8 Numerical Integration; 3.5 XFEM Strong Discontinuity Enrichments; 3.5.1 A Modified FE Shape Function; 3.5.2 The Heaviside Function; 3.5.3 The Sign Function
3.5.4 Strong Tangential Discontinuity
Record Nr. UNINA-9910141411003321
Mohammadi S (Soheil)  
Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
XFEM fracture analysis of composites [[electronic resource] /] / Soheil Mohammadi
XFEM fracture analysis of composites [[electronic resource] /] / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Descrizione fisica 1 online resource (401 p.)
Disciplina 620.1186
Soggetto topico Composite materials - Fracture
Composite materials - Fatigue
Fracture mechanics
Finite element method
ISBN 1-118-44338-1
1-283-59297-5
9786613905420
1-118-44337-3
1-118-44330-6
1-118-44331-4
Classificazione SCI041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto XFEM FRACTUREANALYSIS OFCOMPOSITES; Contents; Preface; Nomenclature; 1 Introduction; 1.1 Composite Structures; 1.2 Failures of Composites; 1.2.1 Matrix Cracking; 1.2.2 Delamination; 1.2.3 Fibre/Matrix Debonding; 1.2.4 Fibre Breakage; 1.2.5 Macro Models of Cracking in Composites; 1.3 Crack Analysis; 1.3.1 Local and Non-Local Formulations; 1.3.2 Theoretical Methods for Failure Analysis; 1.4 Analytical Solutions for Composites; 1.4.1 Continuum Models; 1.4.2 Fracture Mechanics of Composites; 1.5 Numerical Techniques; 1.5.1 Boundary Element Method; 1.5.2 Finite Element Method
1.5.3 Adaptive Finite/Discrete Element Method1.5.4 Meshless Methods; 1.5.5 Extended Finite Element Method; 1.5.6 Extended Isogeometric Analysis; 1.5.7 Multiscale Analysis; 1.6 Scope of the Book; 2 Fracture Mechanics, A Review; 2.1 Introduction; 2.2 Basics of Elasticity; 2.2.1 Stress-Strain Relations; 2.2.2 Airy Stress Function; 2.2.3 Complex Stress Functions; 2.3 Basics of LEFM; 2.3.1 Fracture Mechanics; 2.3.2 Infinite Tensile Plate with a Circular Hole; 2.3.3 Infinite Tensile Plate with an Elliptical Hole; 2.3.4 Westergaard Analysis of a Line Crack; 2.3.5 Williams Solution of a Wedge Corner
2.4 Stress Intensity Factor, K2.4.1 Definition of the Stress Intensity Factor; 2.4.2 Examples of Stress Intensity Factors for LEFM; 2.4.3 Griffith Energy Theories; 2.4.4 Mixed Mode Crack Propagation; 2.5 Classical Solution Procedures for K and G; 2.5.1 Displacement Extrapolation/Correlation Method; 2.5.2 Mode I Energy Release Rate; 2.5.3 Mode I Stiffness Derivative/Virtual Crack Model; 2.5.4 Two Virtual Crack Extensions for Mixed Mode Cases; 2.5.5 Single Virtual Crack Extension Based on Displacement Decomposition; 2.6 Quarter Point Singular Elements; 2.7 J Integral; 2.7.1 Generalization of J
2.7.2 Effect of Crack Surface Traction2.7.3 Effect of Body Force; 2.7.4 Equivalent Domain Integral (EDI) Method; 2.7.5 Interaction Integral Method; 2.8 Elastoplastic Fracture Mechanics (EPFM); 2.8.1 Plastic Zone; 2.8.2 Crack-Tip Opening Displacements (CTOD); 2.8.3 J Integral for EPFM; 3 Extended Finite Element Method; 3.1 Introduction; 3.2 Historic Development of XFEM; 3.2.1 A Review of XFEM Development; 3.2.2 A Review of XFEM Composite Analysis; 3.3 Enriched Approximations; 3.3.1 Partition of Unity; 3.3.2 Intrinsic and Extrinsic Enrichments; 3.3.3 Partition of Unity Finite Element Method
3.3.4 MLS Enrichment3.3.5 Generalized Finite Element Method; 3.3.6 Extended Finite Element Method; 3.3.7 Generalized PU Enrichment; 3.4 XFEM Formulation; 3.4.1 Basic XFEM Approximation; 3.4.2 Signed Distance Function; 3.4.3 Modelling the Crack; 3.4.4 Governing Equation; 3.4.5 XFEM Discretization; 3.4.6 Evaluation of Derivatives of Enrichment Functions; 3.4.7 Selection of Nodes for Discontinuity Enrichment; 3.4.8 Numerical Integration; 3.5 XFEM Strong Discontinuity Enrichments; 3.5.1 A Modified FE Shape Function; 3.5.2 The Heaviside Function; 3.5.3 The Sign Function
3.5.4 Strong Tangential Discontinuity
Record Nr. UNINA-9910830758003321
Mohammadi S (Soheil)  
Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
XFEM fracture analysis of composites / / Soheil Mohammadi
XFEM fracture analysis of composites / / Soheil Mohammadi
Autore Mohammadi S (Soheil)
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Descrizione fisica 1 online resource (401 p.)
Disciplina 620.1/186
Soggetto topico Composite materials - Fracture
Composite materials - Fatigue
Fracture mechanics
Finite element method
ISBN 1-118-44338-1
1-283-59297-5
9786613905420
1-118-44337-3
1-118-44330-6
1-118-44331-4
Classificazione SCI041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto XFEM FRACTUREANALYSIS OFCOMPOSITES; Contents; Preface; Nomenclature; 1 Introduction; 1.1 Composite Structures; 1.2 Failures of Composites; 1.2.1 Matrix Cracking; 1.2.2 Delamination; 1.2.3 Fibre/Matrix Debonding; 1.2.4 Fibre Breakage; 1.2.5 Macro Models of Cracking in Composites; 1.3 Crack Analysis; 1.3.1 Local and Non-Local Formulations; 1.3.2 Theoretical Methods for Failure Analysis; 1.4 Analytical Solutions for Composites; 1.4.1 Continuum Models; 1.4.2 Fracture Mechanics of Composites; 1.5 Numerical Techniques; 1.5.1 Boundary Element Method; 1.5.2 Finite Element Method
1.5.3 Adaptive Finite/Discrete Element Method1.5.4 Meshless Methods; 1.5.5 Extended Finite Element Method; 1.5.6 Extended Isogeometric Analysis; 1.5.7 Multiscale Analysis; 1.6 Scope of the Book; 2 Fracture Mechanics, A Review; 2.1 Introduction; 2.2 Basics of Elasticity; 2.2.1 Stress-Strain Relations; 2.2.2 Airy Stress Function; 2.2.3 Complex Stress Functions; 2.3 Basics of LEFM; 2.3.1 Fracture Mechanics; 2.3.2 Infinite Tensile Plate with a Circular Hole; 2.3.3 Infinite Tensile Plate with an Elliptical Hole; 2.3.4 Westergaard Analysis of a Line Crack; 2.3.5 Williams Solution of a Wedge Corner
2.4 Stress Intensity Factor, K2.4.1 Definition of the Stress Intensity Factor; 2.4.2 Examples of Stress Intensity Factors for LEFM; 2.4.3 Griffith Energy Theories; 2.4.4 Mixed Mode Crack Propagation; 2.5 Classical Solution Procedures for K and G; 2.5.1 Displacement Extrapolation/Correlation Method; 2.5.2 Mode I Energy Release Rate; 2.5.3 Mode I Stiffness Derivative/Virtual Crack Model; 2.5.4 Two Virtual Crack Extensions for Mixed Mode Cases; 2.5.5 Single Virtual Crack Extension Based on Displacement Decomposition; 2.6 Quarter Point Singular Elements; 2.7 J Integral; 2.7.1 Generalization of J
2.7.2 Effect of Crack Surface Traction2.7.3 Effect of Body Force; 2.7.4 Equivalent Domain Integral (EDI) Method; 2.7.5 Interaction Integral Method; 2.8 Elastoplastic Fracture Mechanics (EPFM); 2.8.1 Plastic Zone; 2.8.2 Crack-Tip Opening Displacements (CTOD); 2.8.3 J Integral for EPFM; 3 Extended Finite Element Method; 3.1 Introduction; 3.2 Historic Development of XFEM; 3.2.1 A Review of XFEM Development; 3.2.2 A Review of XFEM Composite Analysis; 3.3 Enriched Approximations; 3.3.1 Partition of Unity; 3.3.2 Intrinsic and Extrinsic Enrichments; 3.3.3 Partition of Unity Finite Element Method
3.3.4 MLS Enrichment3.3.5 Generalized Finite Element Method; 3.3.6 Extended Finite Element Method; 3.3.7 Generalized PU Enrichment; 3.4 XFEM Formulation; 3.4.1 Basic XFEM Approximation; 3.4.2 Signed Distance Function; 3.4.3 Modelling the Crack; 3.4.4 Governing Equation; 3.4.5 XFEM Discretization; 3.4.6 Evaluation of Derivatives of Enrichment Functions; 3.4.7 Selection of Nodes for Discontinuity Enrichment; 3.4.8 Numerical Integration; 3.5 XFEM Strong Discontinuity Enrichments; 3.5.1 A Modified FE Shape Function; 3.5.2 The Heaviside Function; 3.5.3 The Sign Function
3.5.4 Strong Tangential Discontinuity
Record Nr. UNINA-9910877681703321
Mohammadi S (Soheil)  
Chichester, West Sussex, United Kingdom, : John Wiley & Sons Inc., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui