top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Autore Rajasekar R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (538 pages)
Altri autori (Persone) MoganapriyaC
KumarP. Sathish
ISBN 1-394-19808-6
1-394-19807-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910835066903321
Rajasekar R
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of mechanical and manufacturing engineering with IoT : a digital transformation / / edited by R. Rajasekar, C. Moganapriya, M.Harikrishna Kumar, P. Sathish Kumar
Integration of mechanical and manufacturing engineering with IoT : a digital transformation / / edited by R. Rajasekar, C. Moganapriya, M.Harikrishna Kumar, P. Sathish Kumar
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (342 pages)
Disciplina 620.00285
Soggetto topico Internet of things - Industrial applications
Engineering - Data processing
Manufacturing processes
Mechanical engineering
Production engineering
ISBN 9781119865001
1-119-86539-5
1-119-86538-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Evolution of Internet of Things (IoT): Past, Present and Future for Manufacturing Systems -- 1.1 Introduction -- 1.2 IoT Revolution -- 1.3 IoT -- 1.4 Fundamental Technologies -- 1.4.1 RFID and NFC -- 1.4.2 WSN -- 1.4.3 Data Storage and Analytics (DSA) -- 1.5 IoT Architecture -- 1.6 Cloud Computing (CC) and IoT -- 1.6.1 Service of CC -- 1.6.2 Integration of IoT With CC -- 1.7 Edge Computing (EC) and IoT -- 1.7.1 EC with IoT Architecture -- 1.8 Applications of IoT -- 1.8.1 Smart Mobility -- 1.8.2 Smart Grid -- 1.8.3 Smart Home System -- 1.8.4 Public Safety and Environment Monitoring -- 1.8.5 Smart Healthcare Systems -- 1.8.6 Smart Agriculture System -- 1.9 Industry 4.0 Integrated With IoT Architecture for Incorporation of Designing and Enhanced Production Systems -- 1.9.1 Five-Stage Process of IoT for Design and Manufacturing System -- 1.9.2 IoT Architecture for Advanced Manufacturing Technologies -- 1.9.3 Architecture Development -- 1.10 Current Issues and Challenges in IoT -- 1.10.1 Scalability -- 1.10.2 Issue of Trust -- 1.10.3 Service Availability -- 1.10.4 Security Challenges -- 1.10.5 Mobility Issues -- 1.10.6 Architecture for IoT -- 1.11 Conclusion -- References -- Chapter 2 Fourth Industrial Revolution: Industry 4.0 -- 2.1 Introduction -- 2.1.1 Global Level Adaption -- 2.2 Evolution of Industry -- 2.2.1 Industry 1.0 -- 2.2.2 Industry 2.0 -- 2.2.3 Industry 3.0 -- 2.2.4 Industry 4.0 (or) I4.0 -- 2.3 Basic IoT Concepts and the Term Glossary -- 2.4 Industrial Revolution -- 2.4.1 I4.0 Core Idea -- 2.4.2 Origin of I4.0 Concept -- 2.5 Industry -- 2.5.1 Manufacturing Phases -- 2.5.2 Existing Process Planning vs. I4.0 -- 2.5.3 Software for Product Planning-A Link Between Smart Products and the Main System ERP -- 2.6 Industry Production System 4.0 (Smart Factory).
2.6.1 IT Support -- 2.7 I4.0 in Functional Field -- 2.7.1 I4.0 Logistics -- 2.7.2 Resource Planning -- 2.7.3 Systems for Warehouse Management -- 2.7.4 Transportation Management Systems -- 2.7.5 Transportation Systems with Intelligence -- 2.7.6 Information Security -- 2.8 Existing Technology in I4.0 -- 2.8.1 Applications of I4.0 in Existing Industries -- 2.8.2 Additive Manufacturing (AM) -- 2.8.3 Intelligent Machines -- 2.8.4 Robots that are Self-Aware -- 2.8.5 Materials that are Smart -- 2.8.6 IoT -- 2.8.7 The Internet of Things in Industry (IIoT) -- 2.8.8 Sensors that are Smart -- 2.8.9 System Using a Smart Programmable Logic Controller (PLC) -- 2.8.10 Software -- 2.8.11 Augmented Reality (AR)/Virtual Reality (VR) -- 2.8.12 Gateway for the Internet of Things -- 2.8.13 Cloud -- 2.8.14 Applications of Additive Manufacturing in I4.0 -- 2.8.15 Artificial Intelligence (AI) -- 2.9 Applications in Current Industries -- 2.9.1 I4.0 in Logistics -- 2.9.2 I4.0 in Manufacturing Operation -- 2.10 Future Scope of Research -- 2.10.1 Theoretical Framework of I4.0 -- 2.11 Discussion and Implications -- 2.11.1 Hosting: Microsoft -- 2.11.2 Platform for the Internet of Things (IoT): Microsoft, GE, PTC, and Siemens -- 2.11.3 A Systematic Computational Analysis -- 2.11.4 Festo Proximity Sensor -- 2.11.5 Connectivity Hardware: HMS -- 2.11.6 IT Security: Claroty -- 2.11.7 Accenture Is a Systems Integrator -- 2.11.8 Additive Manufacturing: General Electric -- 2.11.9 Augmented and Virtual Reality: Upskill -- 2.11.10 ABB Collaborative Robots -- 2.11.11 Connected Vision System: Cognex -- 2.11.12 Drones/UAVs: PINC -- 2.11.13 Self-Driving in Vehicles: Clear Path Robotics -- 2.12 Conclusion -- References -- Chapter 3 Interaction of Internet of Things and Sensors for Machining -- 3.1 Introduction -- 3.2 Various Sensors Involved in Machining Process -- 3.2.1 Direct Method Sensors.
3.2.2 Indirect Method Sensors -- 3.2.3 Dynamometer -- 3.2.4 Accelerometer -- 3.2.5 Acoustic Emission Sensor -- 3.2.6 Current Sensors -- 3.3 Other Sensors -- 3.3.1 Temperature Sensors -- 3.3.2 Optical Sensors -- 3.4 Interaction of Sensors During Machining Operation -- 3.4.1 Milling Machining -- 3.4.2 Turning Machining -- 3.4.3 Drilling Machining Operation -- 3.5 Sensor Fusion Technique -- 3.6 Interaction of Internet of Things -- 3.6.1 Identification -- 3.6.2 Sensing -- 3.6.3 Communication -- 3.6.4 Computation -- 3.6.5 Services -- 3.6.6 Semantics -- 3.7 IoT Technologies in Manufacturing Process -- 3.7.1 IoT Challenges -- 3.7.2 IoT-Based Energy Monitoring System -- 3.8 Industrial Application -- 3.8.1 Integrated Structure -- 3.8.2 Monitoring the System Related to Service Based on Internet of Things -- 3.9 Decision Making Methods -- 3.9.1 Artificial Neural Network -- 3.9.2 Fuzzy Inference System -- 3.9.3 Support Vector Mechanism -- 3.9.4 Decision Trees and Random Forest -- 3.9.5 Convolutional Neural Network -- 3.10 Conclusion -- References -- Chapter 4 Application of Internet of Things (IoT) in the Automotive Industry -- 4.1 Introduction -- 4.2 Need For IoT in Automobile Field -- 4.3 Fault Diagnosis in Automobile -- 4.4 Automobile Security and Surveillance System in IoT-Based -- 4.5 A Vehicle Communications -- 4.6 The Smart Vehicle -- 4.7 Connected Vehicles -- 4.7.1 Vehicle-to-Vehicle (V2V) Communications -- 4.7.2 Vehicle-to-Infrastructure (V2I) Communications -- 4.7.3 Vehicle-to-Pedestrian (V2P) Communications -- 4.7.4 Vehicle to Network (V2N) Communication -- 4.7.5 Vehicle to Cloud (V2C) Communication -- 4.7.6 Vehicle to Device (V2D) Communication -- 4.7.7 Vehicle to Grid (V2G) Communications -- 4.8 Conclusion -- References -- Chapter 5 IoT for Food and Beverage Manufacturing -- 5.1 Introduction -- 5.2 The Influence of IoT in a Food Industry.
5.2.1 Management -- 5.2.2 Workers -- 5.2.3 Data -- 5.2.4 IT -- 5.3 A Brief Review of IoT's Involvement in the Food Industry -- 5.4 Challenges to the Food Industry and Role of IoT -- 5.4.1 Handling and Sorting Complex Data -- 5.4.2 A Retiring Skilled Workforce -- 5.4.3 Alternatives for Supply Chain Management -- 5.4.4 Implementation of IoT in Food and Beverage Manufacturing -- 5.4.5 Pilot -- 5.4.6 Plan -- 5.4.7 Proliferate -- 5.5 Applications of IoT in a Food Industry -- 5.5.1 IoT for Handling of Raw Material and Inventory Control -- 5.5.2 Factory Operations and Machine Conditions Using IoT -- 5.5.3 Quality Control With the IoT -- 5.5.4 IoT for Safety -- 5.5.5 The Internet of Things and Sustainability -- 5.5.6 IoT for Product Delivery and Packaging -- 5.5.7 IoT for Vehicle Optimization -- 5.5.8 IoT-Based Water Monitoring Architecture in the Food and Beverage Industry -- 5.6 A FW Tracking System Methodology Based on IoT -- 5.7 Designing an IoT-Based Digital FW Monitoring and Tracking System -- 5.8 The Internet of Things (IoT) Architecture for a Digitized Food Waste System -- 5.9 Hardware Design: Intelligent Scale -- 5.10 Software Design -- References -- Chapter 6 Opportunities: Machine Learning for Industrial IoT Applications -- 6.1 Introduction -- 6.2 I-IoT Applications -- 6.3 Machine Learning Algorithms for Industrial IoT -- 6.3.1 Supervised Learning -- 6.3.2 Semisupervised Learning -- 6.3.3 Unsupervised Learning -- 6.3.4 Reinforcement Learning -- 6.3.5 The Most Common and Popular Machine Learning Algorithms -- 6.4 I-IoT Data Analytics -- 6.4.1 Tools for IoT Analytics -- 6.4.2 Choosing the Right IoT Data Analytics Platforms -- 6.5 Conclusion -- References -- Chapter 7 Role of IoT in Industry Predictive Maintenance -- 7.1 Introduction -- 7.2 Predictive Maintenance -- 7.3 IPdM Systems Framework and Few Key Methodologies.
7.3.1 Detection and Collection of Data -- 7.3.2 Initial Processing of Collected Data -- 7.3.3 Modeling as Per Requirement -- 7.3.4 Influential Parameters -- 7.3.5 Identification of Best Working Path -- 7.3.6 Modifying Output With Respect Sensed Input -- 7.4 Economics of PdM -- 7.5 PdM for Production and Product -- 7.6 Implementation of IPdM -- 7.6.1 Manufacturing with Zero Defects -- 7.6.2 Sense of the Windsene INDSENSE -- 7.7 Case Studies -- 7.7.1 Area 1-Heavy Ash Evacuation -- 7.7.2 Area 2-Seawater Pumps -- 7.7.3 Evaporators -- 7.7.4 System Deployment Considerations in General -- 7.8 Automotive Industry-Integrated IoT -- 7.8.1 Navigation Aspect -- 7.8.2 Continual Working of Toll Booth -- 7.8.3 Theft Security System -- 7.8.4 Black Box-Enabled IoT -- 7.8.5 Regularizing Motion of Emergency Vehicle -- 7.8.6 Pollution Monitoring System -- 7.8.7 Timely Assessment of Driver's Condition -- 7.8.8 Vehicle Performance Monitoring -- 7.9 Conclusion -- References -- Chapter 8 Role of IoT in Product Development -- 8.1 Introduction -- 8.1.1 Industry 4.0 -- 8.2 Need to Understand the Product Architecture -- 8.3 Product Development Process -- 8.3.1 Criteria to Classify the New Products -- 8.3.2 Product Configuration -- 8.3.3 Challenges in Product Development while Developing IoT Products (Data-Driven Product Development) -- 8.3.4 Role of IoT in Product Development for Industrial Applications -- 8.3.5 Impacts and Future Perspectives of IoT in Product Development -- 8.4 Conclusion -- References -- Chapter 9 Benefits of IoT in Automated Systems -- 9.1 Introduction -- 9.2 Benefits of Automation -- 9.2.1 Improved Productivity -- 9.2.2 Efficient Operation Management -- 9.2.3 Better Use of Resources -- 9.2.4 Cost-Effective Operation -- 9.2.5 Improved Work Safety -- 9.2.6 Software Bots -- 9.2.7 Enhanced Public Sector Operations -- 9.2.8 Healthcare Benefits.
9.3 Smart City Automation.
Record Nr. UNINA-9910830752203321
Hoboken, New Jersey : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 621.31244
Soggetto topico Solar cells - Materials
Soggetto genere / forma Electronic books.
ISBN 1-119-75217-5
1-119-75220-5
1-119-75218-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Solar Cells - Fundamentals and Emerging Categories -- 1 Introduction to Solar Energy Conversion -- 1.1 Introduction -- 1.2 Forms of Energy -- 1.3 Solar Radiation -- 1.4 Heat Transfer Principles -- 1.4.1 Conduction -- 1.4.2 Convection -- 1.4.3 Radiation -- 1.5 Basic Laws of Radiation -- 1.5.1 Stefan-Boltzmann Law -- 1.5.2 Planck's Law -- 1.5.3 Wien's Displacement Law -- 1.6 Solar Energy Conversion -- 1.6.1 Sources of Renewable and Non-Renewable Energy -- 1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources -- 1.7 Photo-Thermal Conversion System -- 1.7.1 Flat Plate Collector -- 1.7.2 Evacuated Solar Collector -- 1.8 Thermal Applications -- 1.8.1 Solar Water Heating Systems -- 1.8.2 Steam Generation -- 1.9 Solar Drying -- 1.9.1 Natural Circulation Methods -- 1.9.2 Forced Circulation Systems -- 1.10 Photovoltaic Conversion -- 1.10.1 Photovoltaic Effect -- 1.10.2 Applications -- 1.11 Photovoltaic Thermal Systems -- 1.12 Conclusion -- References -- 2 Development of Solar Cells -- Abbreviations -- 2.1 Introduction -- 2.2 First-Generation PV Cells -- 2.2.1 Single-Crystalline PV Cells -- 2.3 Second-Generation Solar PV Technology -- 2.3.1 Amorphous Silicon PV Cell -- 2.3.2 Cadmium Telluride PV Cell -- 2.3.3 Copper Indium Gallium Diselenide PV Cells -- 2.4 Third-Generation PV Cells -- 2.4.1 Copper Zinc Tin Sulfide PV Cell -- 2.4.2 Dye Sensitized PV Cell -- 2.4.3 Organic PV Cell -- 2.4.4 Perovskite PV Solar Cells -- 2.4.5 Polymer Photovoltaic Cell -- 2.4.6 Quantum Dot Photovoltaic Cell -- 2.5 Conclusion -- References -- 3 Recycling of Solar Panels -- Abbreviations -- 3.1 Introduction -- 3.2 PV and Recycling Development Worldwide -- 3.2.1 Causes of Inability in Solar PV Panel -- 3.3 Current Recycling and Recovery Techniques.
3.3.1 Methods for Recycling -- 3.3.2 Physical Separation -- 3.3.3 Thermal and Chemical-Based Treatment -- 3.4 Strategies for Recycling Processes -- 3.5 Approaches for Recycling of Solar Panel -- 3.5.1 Component Repair -- 3.5.2 Module Separation -- 3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules -- 3.6 Global Surveys in PV Recycling Technology -- 3.7 Ecological and Economic Impacts -- 3.7.1 Evolutionary Factors -- 3.7.2 Socio-Economic Concerns -- 3.8 Conclusion -- References -- 4 Multi-Junction Solar Cells -- Abbreviation -- 4.1 Introduction -- 4.1.1 Theory of Multi-Junction Cells -- 4.2 Key Issues for Realizing the Efficiency of MJCs -- 4.2.1 Preference of Top Layer Materials and Enhancing the Quality -- 4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction -- 4.2.3 Lattice-Matching Between Cell Materials and Substrates -- 4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer -- 4.3 Structure of Multi-Junction Cell -- 4.3.1 Multi-Junction Cell With BSF Layer -- 4.3.2 Optimization of BSF Layers -- 4.4 Novel Materials for Multi-Junction Cells -- 4.5 Applications -- 4.6 Conclusions -- References -- 5 Perovskite Solar Cells -- 5.1 Introduction -- 5.2 Structure and Working -- 5.3 Fabrication of Simple Perovskite Solar Cell -- 5.4 Fabrication Methods -- 5.4.1 Spin Coating -- 5.4.2 Blade Coating -- 5.4.3 Slot-Die Coating -- 5.4.4 Inkjet Printing -- 5.4.5 Screen Printing -- 5.4.6 Electrodeposition -- 5.4.7 Vapor-Phase Deposition -- 5.5 Stability of Perovskite Solar Cell -- 5.6 Losses in Solar Cells -- 5.7 Conclusion -- References -- 6 Natural Dye-Sensitized Solar Cells -- Abbreviations -- 6.1 Introduction -- 6.2 Dye-Sensitized Solar Cells (DSSCs) -- 6.2.1 The Structure and Operation Principle -- 6.2.2 Performance Parameters of DSSCs.
6.2.2.1 Open Circuit Voltage -- 6.2.2.2 Short Circuit Current -- 6.2.2.3 Fill Factor -- 6.2.2.4 Efficiency -- 6.3 Dye (Photosensitizer) -- 6.3.1 Natural Dyes -- 6.3.2 Plant Pigments -- 6.3.2.1 Anthocyanin -- 6.3.2.2 Chlorophylls -- 6.3.2.3 Betalain -- 6.3.2.4 Carotenoids -- 6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers-Notable Studies -- 6.4 Conclusion -- References -- Part 2: Materials, Methods and Applications -- 7 Organic Materials and Their Processing Techniques -- 7.1 Introduction -- 7.2 Organic Materials -- 7.2.1 Organic Solar Cell -- 7.2.2 Challenges in Organic Solar Cells -- 7.2.3 Focus Area to Overcome the Challenges -- 7.2.4 Operation of Organic Solar Cells -- 7.2.5 Organic Solar Cell Device Architecture -- 7.3 Electrical Characteristics of OPVs -- 7.3.1 Open-Circuit Voltage -- 7.3.2 Short-Circuit Current -- 7.3.3 Maximum Power Point -- 7.3.4 Fill Factor -- 7.3.5 Power Conversion Efficiency -- 7.3.6 Quantum Efficiency -- 7.4 Potential Materials for OPV Applications -- 7.4.1 Electron-Donor Materials -- 7.4.2 Electron-Acceptor Materials -- 7.5 Conclusion -- References -- 8 Inorganic Materials and Their Processing Techniques -- 8.1 Introduction -- 8.2 Functional Inorganic Materials -- 8.3 Comprehensive Processing Strategy -- 8.4 Solid-Phase Processing -- 8.4.1 Ceramic Method -- 8.4.2 Microwave Technique -- 8.4.3 Combustion Synthesis -- 8.4.4 Mechanochemical Synthesis -- 8.4.5 Carbothermal Reduction -- 8.4.6 Friction Consolidation -- 8.4.7 3D Printing Technique -- 8.4.8 Nanolithography Technique -- 8.5 Solution-Phase Processing -- 8.5.1 Sol-Gel Process -- 8.5.2 Hydrothermal and Solvothermal Process -- 8.5.3 Sonochemical Synthesis -- 8.5.4 Surface Coating Technique -- 8.5.5 Spray Pyrolysis Technique -- 8.5.6 Electroplating and Electrodeposition Process -- 8.5.7 Liquid Printing Technique.
8.5.8 Liquid-Phase Laser Ablation Technique -- 8.5.9 Electrospinning and Electrospraying Technique -- 8.6 Gas-Phase Processing -- 8.6.1 Physical Vapor Deposition Technique -- 8.6.2 Chemical Vapor Deposition Technique -- 8.6.3 Inert Gas Condensation Technique -- 8.6.4 Molecular Beam Epitaxy Technique -- 8.6.5 Gas-Phase Flame Spray Pyrolysis -- 8.7 Challenges in Nanomaterial Production and Processing -- 8.8 Conclusion and Perspectives -- References -- 9 2D Materials for Solar Cell Applications -- 9.1 Introduction -- 9.2 Fundamental Principles of Solar Cell -- 9.3 Fabrication Methods for the Generation of Solar Cell -- 9.3.1 Spin Coating -- 9.3.2 Spray Coating -- 9.3.3 Doctor Blading -- 9.3.4 Slot-Die Coating -- 9.3.5 Vacuum Deposition/Chemical Vapor Deposition -- 9.3.6 Screen Printing -- 9.4 Introduction to 2D Materials -- 9.4.1 Graphene -- 9.4.2 Boron Nitride -- 9.4.3 Molybdenum Disulfide -- 9.4.4 MXenes -- 9.4.5 Other 2D Materials -- 9.5 Solar Cell Application of 2D Materials -- 9.5.1 2D Materials for Organic Solar Cells -- 9.5.2 2D Materials for Perovskite Solar Cells -- 9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs) -- 9.5.4 2D Materials for Other Solar Cell -- 9.6 Conclusions -- References -- 10 Nanostructured Materials and Their Processing Techniques -- 10.1 Introduction -- 10.2 The Need for Solar Energy -- 10.2.1 Solar Photovoltaic Cell -- 10.2.2 Solar Thermal Heating -- 10.3 Nanoscience and Nanotechnology -- 10.4 Nanotechnology in Solar Energy -- 10.4.1 Nanomaterials -- 10.4.2 Properties of Nanomaterials -- 10.4.3 Nanofluids -- 10.5 The Outlook of Nanomaterials in the Performance of Solar Cells -- 10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques -- 10.6.1 Sol-Gel Method -- 10.6.2 Hydrothermal Method -- 10.6.3 Solvothermal Technique -- 10.6.4 Co-Precipitation Technique -- 10.6.5 Magnetron Sputtering.
10.6.6 Spin Coating -- 10.6.7 Chemical Vapor Deposition Technique -- 10.7 Nanofluids in Solar Collectors -- 10.8 Nanofluids in Solar Stills -- 10.9 Conclusion -- References -- 11 Coating Materials, Methods, and Techniques -- 11.1 Introduction -- 11.2 Thin Film Deposition Techniques -- 11.2.1 Advantages of Thin Films -- 11.3 Anti-Reflection Thin Films -- 11.4 Methods of Thin Film Growth -- 11.4.1 Physical Vapor Deposition -- 11.4.2 Thermal Evaporation Process -- 11.4.3 Pulsed Laser Deposition -- 11.4.4 Sputter Deposition -- 11.4.5 Chemical Vapor Deposition -- 11.4.6 Plasma-Enhanced CVD Method -- 11.4.7 Electrochemical Deposition -- 11.4.8 Sol-Gel Thin Film Formation -- 11.5 Thin Film Characterization -- 11.5.1 X-ray Diffraction -- 11.5.2 Fourier Transform Infrared Spectroscopy -- 11.5.3 Thermogravimetry and Differential Thermal Analysis -- 11.5.4 UV-Visible Spectroscopy -- 11.5.5 Field Emission Scanning Electron Microscope -- 11.5.6 High-Resolution Transmission Electron Microscope -- 11.5.7 Atomic Force Microscopy -- 11.5.8 Four-Probe Technique -- 11.6 Performance Analysis of ARC Coated Solar Cells -- 11.7 Conclusion -- References -- 12 Anti-Reflection Coating -- 12.1 Introduction -- 12.2 Anti-Reflection Coating -- 12.2.1 Types of Anti-Reflection Coating -- 12.2.2 Textured Coating -- 12.2.3 Anti-Reflection Coating With Self-Cleaning -- 12.3 Perspectives on ARC Materials -- 12.3.1 Silicon-Based Material -- 12.3.2 TiO2-Based Material -- 12.3.3 Carbon-Based Material -- 12.3.4 Gallium-Based Material -- 12.3.5 Polymer-Based Material -- 12.3.6 Organic-Based Material -- 12.4 Techniques for Coating ARC -- 12.4.1 Sol-Gel Technique -- 12.4.2 Physical Vapor Deposition -- 12.4.3 RF and DC Magnetron Sputtering Technique -- 12.4.4 Chemical Vapor Deposition -- 12.4.5 Electrospinning Technique -- 12.4.6 Spray Pyrolysis Technique -- 12.4.7 Lithography.
12.4.8 Comparison of Coating Techniques.
Record Nr. UNINA-9910554807503321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Materials for solar energy conversion : materials, methods and applications / / edited by R. Rajasekar, C. Moganapriya, A. Mohankumar
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 621.31244
Soggetto topico Solar cells - Materials
ISBN 1-119-75217-5
1-119-75220-5
1-119-75218-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 12.4.8 Comparison of Coating Techniques.
Record Nr. UNINA-9910830139603321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui