top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 227 p. 68 illus., 50 illus. in color.)
Disciplina 016.391
Soggetto topico Intelligent agents (Computer software) - Security measures
Artificial intelligence
Computer security
ISBN 9783030556921
3-030-55692-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses -- 1. Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning -- 2. Security of Distributed Machine Learning:A Game-Theoretic Approach to Design Secure DSVM -- 3. Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games -- Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks -- 4. Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model -- 5. Overview of GANs for Image Synthesis and Detection Methods -- 6. Robust Machine Learning using Diversity and Blockchain -- Part III: Human Machine Interactions and Roles in Automated Cyber Defenses -- 7. Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents -- 8. Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks -- 9. Homology as an Adversarial Attack Indicator -- Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs).
Record Nr. UNINA-9910484456103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Adversary-aware learning techniques and trends in cybersecurity / / Prithviraj Dasgupta; Joseph B Collins; Ranjeev Mittu
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 227 p. 68 illus., 50 illus. in color.)
Disciplina 016.391
Soggetto topico Intelligent agents (Computer software) - Security measures
Artificial intelligence
Computer security
ISBN 9783030556921
3-030-55692-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses -- 1. Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning -- 2. Security of Distributed Machine Learning:A Game-Theoretic Approach to Design Secure DSVM -- 3. Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games -- Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks -- 4. Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model -- 5. Overview of GANs for Image Synthesis and Detection Methods -- 6. Robust Machine Learning using Diversity and Blockchain -- Part III: Human Machine Interactions and Roles in Automated Cyber Defenses -- 7. Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents -- 8. Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks -- 9. Homology as an Adversarial Attack Indicator -- Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs).
Record Nr. UNISA-996464400503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Autonomy and Artificial Intelligence: A Threat or Savior? / / edited by W.F. Lawless, Ranjeev Mittu, Donald Sofge, Stephen Russell
Autonomy and Artificial Intelligence: A Threat or Savior? / / edited by W.F. Lawless, Ranjeev Mittu, Donald Sofge, Stephen Russell
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XIV, 318 p. 102 illus., 86 illus. in color.)
Disciplina 006.3
Soggetto topico Artificial intelligence
Robotics
Automation
Computational intelligence
Artificial Intelligence
Robotics and Automation
Computational Intelligence
ISBN 3-319-59719-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Introduction -- Reexamining Computational Support for Intelligence Analysis: A Functional Design for a Future Capability -- Task Allocation Using Parallelized Clustering and Auctioning Algorithms for Heterogeneous Robotic Swarms Operating on a Cloud Network -- Human Information Interaction, Artificial Intelligence, and Errors -- Verification Challenges for Autonomous Systems -- Conceptualizing Over trust in Robots: Why Do People Trust a Robot That Previously Failed? -- Research Considerations and Tools for Evaluating Human-Automation Interaction with Future Unmanned Systems -- Robot autonomy: some technical issues -- How Children with Autism and Machines Learn to Interact -- Semantic Vector Spaces for Broadening Consideration of Consequences -- On the Road to Autonomy: Evaluating and Optimizing Hybrid Team Dynamics -- Cyber-security and Optimization in Smart “Autonomous” Buildings -- Evaluations: Autonomy and Artificial Intelligence: A threat or savior?
Record Nr. UNINA-9910254831103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Robust Intelligence and Trust in Autonomous Systems / / edited by Ranjeev Mittu, Donald Sofge, Alan Wagner, W.F. Lawless
Robust Intelligence and Trust in Autonomous Systems / / edited by Ranjeev Mittu, Donald Sofge, Alan Wagner, W.F. Lawless
Edizione [1st ed. 2016.]
Pubbl/distr/stampa New York, NY : , : Springer US : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (277 p.)
Disciplina 004
Soggetto topico Artificial intelligence
Robotics
Automation
Computational intelligence
Artificial Intelligence
Robotics and Automation
Computational Intelligence
ISBN 1-4899-7668-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Towards modeling the behavior of autonomous systems and humans for trusted operations -- Learning trustworthy behaviors using an inverse trust metric -- The “Trust V”—Building and measuring trust in autonomous systems -- Big Data analytic paradigms—From principle component analysis to deep learning -- Artificial brain systems based on neural network discrete chaotic dynamics. Toward the development of conscious and rational robots -- Modeling and control of trust in human-robot collaborative manufacturing -- Investigating human-robot trust in emergency scenarios: methodological lessons learned -- Designing for robust and effective teamwork in human-agent teams -- Measuring Trust in Human Robot Interactions: Development of the “Trust Perception Scale-HRI” -- Methods for developing trust models for intelligent systems -- The intersection of robust intelligence and trust: Hybrid teams, firms & systems.
Record Nr. UNINA-9910254994403321
New York, NY : , : Springer US : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui