top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced prognostic predictive modelling in healthcare data analytics / / Sudipta Roy, Lalit Mohan Goyal, Mamta Mittal, editors
Advanced prognostic predictive modelling in healthcare data analytics / / Sudipta Roy, Lalit Mohan Goyal, Mamta Mittal, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (317 pages)
Disciplina 610.28563
Collana Lecture Notes on Data Engineering and Communications Technologies
Soggetto topico Artificial intelligence - Medical applications
Medical informatics
Information visualization
Pronòstic mèdic
Simulació per ordinador
Intel·ligència artificial en medicina
Informàtica mèdica
Mineria de dades
Soggetto genere / forma Llibres electrònics
ISBN 981-16-0538-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483684603321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advancement of Machine Intelligence in Interactive Medical Image Analysis / / edited by Om Prakash Verma, Sudipta Roy, Subhash Chandra Pandey, Mamta Mittal
Advancement of Machine Intelligence in Interactive Medical Image Analysis / / edited by Om Prakash Verma, Sudipta Roy, Subhash Chandra Pandey, Mamta Mittal
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (336 pages)
Disciplina 610.28563
Collana Algorithms for Intelligent Systems
Soggetto topico Engineering—Data processing
Machine learning
Big data
Signal processing
Image processing
Speech processing systems
Optical data processing
Data Engineering
Machine Learning
Big Data/Analytics
Signal, Image and Speech Processing
Image Processing and Computer Vision
ISBN 981-15-1100-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Pragmatic Medical Image Analysis and Deep Learning: An Emerging Trend -- Aspect of Big Data in Medical Imaging to Extract the Hidden Information Using HIPI in HDFS Environment -- Image Segmentation using Deep Learning Techniques -- Application of Machine Intelligence in Digital Pathology: Identification of Falciparum Malaria in Thin Blood Smear Image -- Efficient ANN Algorithms for Sleep Apnea Detection using Transform Methods -- Medical Image Processing in Detection of Abdomen Diseases -- Multi-Reduct Rough Set Classifier for Computer-Aided Diagnosis in Medical Data -- A New Approach of Intuitionistic Fuzzy Membership Matrix in Medical Diagnosis with Application -- Image Analysis and Automation of Data Processing in Assessment of Dental X-ray (OPG) Using MATLAB and Excel VBA -- Detecting Bone Fracture Using Transfer Learning -- GAN based novel approach for data augmentation with improved disease classification -- Automated glaucoma type identification using Machine learning or Deep learning techniques -- Glaucoma Detection from Retinal Fundus Images using RNFL Texture Analysis -- Artificial Intelligence based Glaucoma Detection -- Security Issues of Internet of Things in Health-Care Sector: An Analytical Approach.
Record Nr. UNINA-9910483975203321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Processing Using Spark in Cloud [[electronic resource] /] / edited by Mamta Mittal, Valentina E. Balas, Lalit Mohan Goyal, Raghvendra Kumar
Big Data Processing Using Spark in Cloud [[electronic resource] /] / edited by Mamta Mittal, Valentina E. Balas, Lalit Mohan Goyal, Raghvendra Kumar
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIII, 264 p. 89 illus., 62 illus. in color.)
Disciplina 005.7
Collana Studies in Big Data
Soggetto topico Big data
Computer security
Big Data
Systems and Data Security
Big Data/Analytics
ISBN 981-13-0550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Concepts of Big Data and Apache Spark -- Big Data Analysis in Cloud and Machine Learning -- Security Issues and Challenges related to Big Data -- Big Data Security Solutions in Cloud -- Data Science and Analytics -- Big Data Technologies -- Data Analysis with Casandra and Spark -- Spin up the Spark Cluster -- Learn Scala -- IO for Spark -- Processing with Spark -- Spark Data Frames and Spark SQL -- Machine Learning and Advanced Analytics -- Parallel Programming with Spark -- Distributed Graph Processing with Spark -- Real Time Processing with Spark -- Spark in Real World -- Case Studies. .
Record Nr. UNINA-9910739483403321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods in Psychiatry
Computational Methods in Psychiatry
Autore Battineni Gopi
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (345 pages)
Altri autori (Persone) MittalMamta
ChintalapudiNalini
Soggetto topico Artificial intelligence
Machine learning
ISBN 9789819966370
981996637X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- Mental Health in Italy During the Pandemic: A Shift from Self-determination to Solidarity? -- 1 Coronavirus and State of Necessity -- 2 The Right to Health as a Fundamental Human Right -- 2.1 Implementation of the Right to Health at International Level -- 3 The Right to Health in the European Context -- 4 Protection of the Right to Health of Persons with Mental Illness in the International Law -- 5 The Right to Health in the Italian Constitution -- 6 From Medical Paternalism to Homo Dignus: The Central Role of the Basaglia Law in the Italian Legal System -- 7 Solidarity as a Principle for Reinterpreting Health and Other Fundamental Rights -- 8 The National Health System to the Test of the Pandemic -- 9 Conclusions -- References -- Analysis of Depression Disorder with Motor Activity Time-Series Data Using Machine Learning and Deep Learning -- 1 Introduction -- 2 Literature Review -- 3 Methods -- 3.1 Dataset -- 3.2 ML Models -- 3.2.1 Logistic Regression -- 3.2.2 Support Vector Machine -- 3.2.3 XGBoost Algorithm -- 3.2.4 Random Forest Method -- 3.2.5 Deep Neural Network -- 3.2.6 Long Short-Term Memory (LSTM) Network -- 3.3 Experimental Setup -- 3.4 ML Model Hyperparameter Tuning -- 3.5 Evaluation Metrics -- 4 Results and Discussion -- 5 Conclusion -- References -- Intelligent Monitoring System Based on ATmega Microcontrollers in Healthcare with Stress Reduce Effect -- 1 Introduction -- 2 Research Background -- 3 Materials and Methods -- 3.1 Project Testing -- 4 Results -- 5 Conclusion -- References -- Predictive Measures to Tackle Mental Disorders During COVID-19 -- 1 Introduction -- 1.1 Why Predictive Measures? -- 1.2 How May Technology Aid? -- 2 Mental Disorders that Can Be Dealt with Computational Technology -- 2.1 Anxiety Disorder -- 2.1.1 Phobia and Panic Disorder Triggered during the Pandemic.
2.1.2 Generalized Anxiety Disorder (GAD) -- 2.1.3 Post-Traumatic Stress Disorder (PTSD) -- 2.1.4 Obsessive-Compulsive Disorder (OCD) -- 2.2 Mood Disorder -- 2.2.1 Depression -- 2.2.2 Bipolar Disorder -- Bipolar I Disorder -- Bipolar II Disorder -- Cyclothymic Disorder (Cyclothymia) -- 2.3 Sexual Disorder -- 2.3.1 Paraphilia Disorder -- 2.4 Traditional Predictive Measures in Psychology to Assess Mental Disorders -- 2.4.1 Life History of Patients -- 2.4.2 Assessment Interviews and Behavioral Observations -- 2.4.3 Psychological Tests -- 2.4.4 Biological Predictive Measures for Mood, Anxiety, and Sexual Disorders -- 2.5 Use of Computational Technology as a Predictive Measure for Anxiety, Mood, and Sexual Disorders -- 3 Major Computing Technologies for Tackling Mental Disorders -- 3.1 Internet of Things (IoT) -- 3.2 Emerging Mobile Applications -- 3.3 Machine Learning/Deep Learning -- 3.4 Big Data Analytics -- 3.5 Assistive Technologies -- 3.6 Federated Learning -- 4 Challenges Associated with Use of Computing for Mental Health Management -- 4.1 Data Acquisition -- 4.2 Consent -- 4.3 Confidentiality -- 4.4 Lack of Legislation -- 4.5 Reliability Issues -- 5 Summary -- References -- Intelligent Digital Monitoring of the Levels of Stress -- 1 Introduction -- 2 Measurement of Stress Levels -- 2.1 Wearable Devices -- 2.2 Behavioural Coding -- 2.2.1 Self-Reporting -- 2.2.2 Physiological Measuring Tools -- 2.2.3 Heart Rate Variability Analysis -- 2.2.4 Psychosocial Approach -- 2.2.5 Perceived Stress Scale -- 2.2.6 Measuring Salivary and Hair Cortisol -- 2.2.7 Pupil Dilation Measurement -- 2.2.8 Electroencephalography -- 2.2.9 Speech Analysis -- 2.2.10 Computer Mouse Usage -- 3 Digital Monitoring of Stress Levels -- 3.1 Intelligent Wireless Sensor Systems -- 3.2 Personal Digital Assistance -- 3.3 Mobile Applications.
3.4 Bioelectronics and Digital Signal Processing -- 3.5 Cognitive Behavioural Therapy and Conversational Chatbots -- 4 Role of Recent Technological Trends in Real-Time Stress Detection -- 4.1 Machine Learning -- 4.2 Deep Learning -- 4.3 Internet of Things -- 4.4 Brain-Inspired Computing -- 4.5 Natural Language Processing -- 5 Conclusions and Future Research Directions -- References -- Consequences of Brain Health in the Digital Era -- 1 Introduction -- 1.1 Attention Deficit Disorders -- 1.2 Impairments in Emotional and Social Intelligence -- 1.3 Physical Effects -- 1.3.1 Mental Health -- 1.3.2 Social Health -- 1.3.3 Impact on Cognitive and Brain Development -- 1.3.4 Sleeping Patterns -- 1.3.5 Effects on Brain Functions -- 2 Technological Interventions to Monitor and Protect from the Harmful Effects on Brain Health in a Digital Era -- 2.1 Method of Cognitive Training to Improve Brain Health -- 2.2 Cognitive Behavioral Therapy -- 2.3 Meditation Apps -- 2.4 Wearable Technology -- 2.5 Virtual Reality Technology -- 2.6 Brain Stimulation Devices -- 2.7 Online Therapy Platforms -- 3 Benefits of the Digital Era on Brain Health -- 3.1 Neural Exercises -- 3.2 Access to Information -- 3.3 Improved Multitasking Skills -- 3.4 Working Memory and Fluid Intelligence -- 3.5 Visual Attention Reaction Time -- 3.6 Telemedicine -- 4 Discussions -- 5 Conclusions -- References -- Brain Health in the Digital Era -- 1 Introduction -- 2 Digital Era and Mental Health of Children -- 2.1 Digital Era and Issues Related to Security, Privacy, and Mental Health of Teenagers -- 2.2 Cyberstalking and Female Mental Health -- 2.3 Revenge Porn and Brain Health -- 3 Impact of Videogames on Brain Health -- 3.1 Virtual Reality and Brain Health -- 3.2 Use of Digital Technologies for Augmenting and Supporting Mental Health -- 3.3 Telemedicine Based Technologies to Improve Mental Health.
4 Screen Time and Mental Health -- 4.1 Suicide and Digital Technologies -- 4.2 Radicalization in the Digital Era -- 4.3 Family Functioning and Digital Era -- 5 Impact of Remote Working During COVID-19 on Mental Health -- 6 Conclusion -- References -- Work from Home and its Impact on Lifestyle of Humanoid in the Context of COVID-19 -- 1 Introduction -- 2 Literature Survey -- 2.1 Work from Home -- 2.2 Level of Living -- 2.2.1 Job Satisfaction of Staff in Home Offices -- 3 Methods -- 3.1 Techniques: Sample -- 3.1.1 Data Gathering -- 3.1.2 Questionnaire -- 3.1.3 Demographic Data -- 4 Discussion -- 4.1 Did the Concept of Work from Home Affect the Efficiency of Work? -- 4.2 Did the Concept of Work from Home Affect Timings of Work? -- 4.3 Did the Concept of Work from Home Affect Family Space? -- 4.4 Did the Concept of Work from Home Affect Work Satisfaction? -- 4.5 Did the Concept of Work from Home Affect Time Management? -- 4.5.1 Improved Timeliness -- 4.5.2 Improved Job Standards -- 4.5.3 Greater Output -- 4.5.4 Decreased Stress and Anxiety -- 5 Conclusion -- References -- Deep Feedforward Neural Networks for Prediction of Mental Health -- 1 Introduction -- 2 Psychiatry Tools -- 2.1 Electroencephalogram (EEG) -- 2.2 QEEG -- 3 Feedforward Neural Networks -- 4 Discussion -- 5 Conclusions -- References -- The Challenge of Self-diagnosis on Mental Health Through Social Media: A Qualitative Study -- 1 Introduction -- 2 Self-diagnosis, Mental Health, and Social Media -- 3 Descriptive Study -- 3.1 Descriptive Evidence -- 3.2 A Model: The Link Between Social Media Usage, Self-diagnosis, and Mental Health -- 4 Conclusion and Discussion -- References -- Relationship Between Mortality and Mental Health Disorders -- 1 Introduction -- 2 Material and Method -- 2.1 Thirthahalli Is a Taluk of Shimoga District of Karnataka.
2.1.1 Indicators of the Mortality Rate in Karnataka for Schizophrenia Include -- 2.1.2 Participants -- 2.1.3 Mortality Data -- 3 Results -- 4 Discussion -- References -- Recent Developments in the Application of Computer-Aided Drug Design in Neurodegenerative Disorders -- 1 Introduction -- 2 Neurodegenerative Diseases -- 2.1 Parkinson's Diseases -- 2.2 Alzheimer's Disease -- 2.3 Huntington's Disease -- 2.4 Amyotrophic Lateral Sclerosis (ALS) -- 2.5 Motor Neuron Disease -- 3 New Trends in Drug Discovery -- 4 Computer-Aided Drug Design Methods -- 4.1 Drug Targets -- 4.2 Statistical Methods -- 4.3 Pharmacophore Modeling -- 4.4 Virtual Screening -- 4.5 Docking and Molecular Dynamics -- 5 Stages of Drug Design -- 5.1 Target Identification and Validation -- 5.2 Hit Identification -- 5.3 Lead Discovery -- 5.4 Structure of Target Protein -- 5.5 Structure-Based De Novo Design -- 5.6 Database Searching -- 5.7 Lead Optimization -- 5.8 Binding Affinity Prediction -- 5.9 Efficient Approaches -- 5.10 Preclinical and Clinical Studies -- 6 Current Scenario and Future Scope of Computer-Aided Drug Designing in the Management of Neurodegenerative Disorders -- References -- Student Stress Detection in Online Learning During Outbreak -- 1 Introduction -- 2 Degree of Stress -- 2.1 Stress Classification -- 2.2 The Impact of Stress on Human Body -- 2.2.1 Respiratory Systems -- 2.2.2 Cardiovascular System -- 2.2.3 Endocrine System -- The HPA Axis -- 2.2.4 Gastrointestinal System -- Exophages -- Stomach -- Bowel -- 2.2.5 Nervous System -- 2.2.6 Male Reproductive System -- Sexual Desire -- Reproduction -- Diseases of the Reproductive System -- 2.2.7 Female Reproductive System -- Menstruation -- Sexual Desire -- Pregnancy -- Premenstrual Syndrome -- Menopause -- Diseases of the Reproductive System -- 3 Stress Characteristics and Impact of Technology Rise.
3.1 Distinct Challenging Stressor Among Students During COVID-19.
Record Nr. UNINA-9910768194003321
Battineni Gopi  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data intensive computing applications for big data / / edited by Mamta Mittal [and three others]
Data intensive computing applications for big data / / edited by Mamta Mittal [and three others]
Pubbl/distr/stampa Amsterdam ; ; Berlin ; ; Washington, DC : , : IOS Press, , [2018]
Descrizione fisica 1 online resource (618 pages)
Disciplina 005.7
Collana Advances in parallel computing
Soggetto topico Big data
ISBN 1-61499-814-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795039503321
Amsterdam ; ; Berlin ; ; Washington, DC : , : IOS Press, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data intensive computing applications for big data / / edited by Mamta Mittal [and three others]
Data intensive computing applications for big data / / edited by Mamta Mittal [and three others]
Pubbl/distr/stampa Amsterdam ; ; Berlin ; ; Washington, DC : , : IOS Press, , [2018]
Descrizione fisica 1 online resource (618 pages)
Disciplina 005.7
Collana Advances in parallel computing
Soggetto topico Big data
ISBN 1-61499-814-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910827929603321
Amsterdam ; ; Berlin ; ; Washington, DC : , : IOS Press, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning Techniques for Biomedical and Health Informatics / / edited by Sujata Dash, Biswa Ranjan Acharya, Mamta Mittal, Ajith Abraham, Arpad Kelemen
Deep Learning Techniques for Biomedical and Health Informatics / / edited by Sujata Dash, Biswa Ranjan Acharya, Mamta Mittal, Ajith Abraham, Arpad Kelemen
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (395 pages)
Disciplina 006.31
Collana Studies in Big Data
Soggetto topico Computational intelligence
Engineering—Data processing
Biomedical engineering
Big data
Artificial intelligence
Computational Intelligence
Data Engineering
Biomedical Engineering and Bioengineering
Big Data
Artificial Intelligence
ISBN 3-030-33966-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MedNLU: Natural Language Understander for Medical Texts -- Deep Learning Based Biomedical Named Entity Recognition Systems -- Disambiguation Model for Bio-Medical Named Entity Recognition -- Applications of Deep Learning in Healthcare and Biomedicine -- Deep Learning for Clinical Decision Support Systems: A Review from the Panorama of Smart Healthcare -- Review of Machine Learning and Deep Learning based Recommender Systems for Health Informatics -- Deep Learning and Explainable AI in Healthcare using EHR -- Deep Learning for Analysis of Electronic Heath Records -- Bioinformatics Using Deep Architecture -- Intelligent, Secure Big Health Data Management using Deep Learning and Blockchain Technology: An Overview -- Malaria Disease Detection using CNN Technique with SGD, RMSprop and ADAM Optimizers -- Deep Reinforcement Learning based Personalized Health Recommendations.
Record Nr. UNINA-9910483376403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Conservation for IoT Devices : Concepts, Paradigms and Solutions / / edited by Mamta Mittal, Sudeep Tanwar, Basant Agarwal, Lalit Mohan Goyal
Energy Conservation for IoT Devices : Concepts, Paradigms and Solutions / / edited by Mamta Mittal, Sudeep Tanwar, Basant Agarwal, Lalit Mohan Goyal
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 356 p. 138 illus., 109 illus. in color.)
Disciplina 006.3
Collana Studies in Systems, Decision and Control
Soggetto topico Computational intelligence
Control engineering
Robotics
Mechatronics
Application software
Big data
Computational Intelligence
Control, Robotics, Mechatronics
Information Systems Applications (incl. Internet)
Big Data
ISBN 981-13-7399-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto IoT Architecture for Preventive Energy Conservation of Smart Buildings -- Designing Energy Efficient IoT based Intelligent Transport System: Need, Architecture, Characteristics, Challenges and Applications -- Energy-Efficient System Design for Internet of Things (IoT) Devices -- Need and Design of Smart and Secure Energy Efficient IoT Based Healthcare Framework -- The Rudiments of Energy Conservation and IoT -- Capacity Estimation of Electric Vehicle Aggregator for Ancillary Services to the Grid -- Existing Enabling Technologies and Solutions for Energy Management in IoT -- Medical Information Processing Using Smartphone Under IoT Framework.
Record Nr. UNINA-9910484111203321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Conservation Solutions for Fog-Edge Computing Paradigms
Energy Conservation Solutions for Fog-Edge Computing Paradigms
Autore Tiwari Rajeev
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2021
Descrizione fisica 1 online resource (314 pages)
Altri autori (Persone) MittalMamta
GoyalLalit Mohan
Collana Lecture Notes on Data Engineering and Communications Technologies Ser.
Soggetto genere / forma Electronic books.
ISBN 981-16-3448-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- Energy-Aware Resource Scheduling in FoG Environment for IoT-Based Applications -- 1 Introduction -- 1.1 Why FoG Computing? -- 1.2 FoG Application Areas in Smart City -- 1.3 Motivation -- 1.4 Contributions -- 1.5 Organization of Work -- 2 Need of FoG Computing -- 2.1 QoS Parameters -- 3 Energy-Aware Survey in Green-IoT -- 4 Related Work -- 4.1 Resource Allocation and Provisioning in Cloud Computing -- 4.2 Resource Allocation and Provisioning in Fog Computing -- 5 Energy Resource Scheduling Algorithms and Intersection of Parameters in Smart City (Smart Homes) -- 6 Future Scope -- References -- DoSP: A Deadline-Aware Dynamic Service Placement Algorithm for Workflow-Oriented IoT Applications in Fog-Cloud Computing Environments -- 1 Introduction -- 2 Motivation Scenario -- 2.1 Sensing Module -- 2.2 Data Aggregation Module -- 2.3 Data Analysis Module -- 2.4 Decision Making -- 2.5 Actuation Module -- 3 Related Work -- 3.1 Building and Deployed Fog-Based IoT Applications -- 3.2 Resource Allocation for IoT Applications in Fog Environment -- 3.3 Service Placement in Fog Environment -- 3.4 A Qualitative Comparison -- 4 System Model -- 4.1 Application Prioritizing Phase -- 4.2 Node Selection Phase -- 4.3 IoT Application Placement Flow in Fog Environment -- 5 Proposed Methodology -- 5.1 Overview of the Proposed Work -- 5.2 Functional Details of the Proposed Work -- 5.3 Deadline-oriented Service Placement Algorithm (DoSP) -- 6 Performance Evaluation -- 6.1 System Setup and Parameters -- 6.2 Experimental Results -- 7 Conclusion and Future Work -- References -- Improvement of Task Offloading for Latency Sensitive Tasks in Fog Environment -- 1 Introduction -- 2 Cloud, Edge and Fog Computing -- 3 Literature Review -- 4 Smart Flower Optimization Algorithm -- 5 Application of SFOA to Task Offloading Problem.
6 Simulations and Results -- 7 Conclusion -- References -- A Sustainable Energy Efficient IoT-Based Solution for Real-Time Traffic Assistance Using Fog Computing -- 1 Introduction -- 1.1 Vehicle Tracking System -- 1.2 Need of Vehicle Tracking -- 1.3 Problem Statement -- 2 Related Work -- 3 Background -- 3.1 IoT -- 3.2 Cloud Computing -- 3.3 Fog Computing -- 3.4 Cloud, Fog, and IoT -- 4 Proposed Architecture -- 4.1 Problem Formulation and Solution -- 5 Simulation and Results -- 6 Conclusion -- References -- Analysis on Application of Fog Computing in Industry 4.0 and Smart Cities -- 1 Introduction -- 2 Overview of Fog Computing -- 3 Overview of Industry 4.0 and Smart Cities -- 4 Related Studies -- 5 A Fog Computing Enabled Smart City -- 6 Facilitating Industry 4.0 Using Fog Computing Architecture -- 7 Three-Layered Fog-Based IoT Architecture for Industry 4.0 -- 8 Advantages of Using Fog Computing for Industry 4.0 and Smart Cities -- 9 Conclusion -- References -- Fog-Computing: A Novel Approach for Cloud-Based Devices Using Perceptual Cloning Manifestation-PerColNif Taxonomy by Energy Optimization -- 1 Introduction -- 1.1 Fog as Eminent Computing Paradigm -- 2 Related Works -- 2.1 Cloud Computing Era in Health Care Services -- 2.2 Cloud Computing for Vehicle Tracking-Accident Detection Systems -- 2.3 Fog Computing Versus Cloud Computing for Time-Sensitive Applications -- 2.4 Virtual Clusters-Fog Bridging Cloud with Edge Devices -- 3 Tri-Layered Proposed Architecture -- 4 Proposed Taxonomy-Fog-Computing-PerColNif-Taxonomy -- 4.1 Perceptual Cloudlet Cloning Manifestation Process [PerColNif] -- 4.2 PerColNif-Algorithm Implementation -- 4.3 Replacement Services-Node-Node Communication -- 5 Fog-Computing Implementation -- 5.1 Algorithm: ADT-Relax Mode-Quick Mode Sensor Node-Accident Detection Unit -- 5.2 Algorithm-Fog Node Execution.
6 Advantages of PerColNif Using Fog-Computation -- 7 Energy Efficiency Performance Analysis -- 8 Open Challenges on Future Fog-Era -- 9 Conclusion -- References -- Performance Evaluation and Energy Efficient VM Placement for Fog-Assisted IoT Environment -- 1 Introduction -- 1.1 Motivation -- 2 Related Work -- 3 System Model -- 4 Performance Measures -- 5 Profit and Revenue Analysis of the System -- 6 The Energy Model of the Fog System -- 6.1 VM Placement Problem Formulation -- 6.2 Greedy Heuristic Algorithm for Energy Saving -- 6.3 An Illustration -- 6.4 Simulation Results -- 7 Conclusion -- References -- Load Balancing in Fog Computing Using QoS -- 1 Introduction -- 1.1 Fog Computing Architecture Layers -- 1.2 Fog Computing Elementary Layers -- 1.3 Communication Workflow in Fog Environment -- 2 Related Work -- 2.1 Cyber Foraging -- 2.2 Cloudlet -- 3 Proposed Framework -- 3.1 Optimized Load Balancing Algorithm (OLBA) -- 3.2 Environmental Setup -- 4 Results and Discussions -- 4.1 Turn Around Time Performance Test -- 4.2 Fog Resources Resource Utilization -- 4.3 Average Response Time -- 4.4 Processing Delay -- 5 Conclusion and Future Scope -- References -- Fog Computing in Industry 4.0: Applications and Challenges-A Research Roadmap -- 1 Introduction -- 1.1 Fog Computing -- 1.2 Industry 4.0 -- 2 Fog Architecture for Industrial Processes -- 3 Fog Equipped Industrial IoT -- 3.1 Transportation -- 3.2 Smart Grids -- 3.3 Mining -- 3.4 Agriculture -- 3.5 Food Industry -- 3.6 Waste Management -- 3.7 Parking -- 4 Fog Computing in Industry 4.0 -- 4.1 Industrial Internet of Things -- 4.2 Big Data -- 4.3 Cloud Computing -- 4.4 Advancement in Robotics -- 4.5 Smart Manufacturing -- 4.6 Flexibility in Machines -- 4.7 Smart City Applications -- 4.8 Smart Factory Applications -- 4.9 Predictable Maintenance -- 4.10 Augmentative Reality -- 5 Research Challenges.
5.1 Heterogeneity -- 5.2 Security -- 5.3 Programmability -- 5.4 Interoperability -- 5.5 Energy Consumption -- 5.6 Quality of Service (QoS) -- 5.7 Cost -- 6 Conclusions -- References -- Fog Computing Based Architecture for Smart City Projects and Applications -- 1 Introduction -- 1.1 Fog Computing and IoT -- 1.2 Fog Computing Versus Cloud Computing -- 1.3 Contribution -- 2 Related Work -- 3 Smart City Projects in India -- 3.1 Industry 4.0 and Smart City Projects -- 4 Role of Fog Computing in Industry 4.0 for Smart City Projects -- 5 Fog Computing Use Cases for Smart City Projects -- 5.1 Smart Waste Management -- 5.2 IoT-Based Smart Waste Management Systems -- 5.3 Proposed Fog Computing Based Smart Waste Management Architecture -- 5.4 Execution Flow of Proposed Smart Waste Management Architecture -- 5.5 Smart Parking -- 5.6 IoT Based Smart Parking Architectures -- 5.7 Proposed Fog Computing Based Smart Parking Architecture -- 5.8 Execution Flow of Proposed Architecture -- 6 Conclusion -- 7 Future Work -- References -- Integration of Fog Computing and IoT-Based Energy Harvesting (EHIoT) Model for Wireless Sensor Network -- 1 Introduction -- 2 Background -- 2.1 Medical Sensors -- 2.2 IoT and Fog Computing in Smart Healthcare -- 2.3 Energy Consumption Models -- 3 Related Works -- 4 Proposed Design -- 4.1 Design of an IoT/Fog-Based WSN Model for Hospital Environment -- 4.2 Design of the Energy Consumption Model -- 4.3 Design of IoT-Based Energy Harvesting Model (EHIoT) -- 5 Conclusion -- References -- Design and Development of Efficient Secure Routing Mechanism for Wireless Sensor Network -- 1 Background -- 2 High-Level Techniques (HIT) -- 3 Problem Description -- 4 Study Objectives -- 5 Literature Review -- 5.1 Literature Survey Based on Hierarchical Routing Protocols -- 5.2 Existing Research Work on Delay Concept in Routing for WSN.
6 Energy-Efficient and Security-Aware Routing Protocols -- 6.1 FEESR Design Methodology -- 6.2 FEESR Algorithm Design and Implementation -- 6.3 Feesr Numerical Analysis and Outcome Comparison -- 6.4 Result Analysis -- 7 Conclusion -- 7.1 Scope and Limitations of the Study -- 7.2 Future Scope of Applicability -- References -- Futuristic Communication Systems Using Mobile Edge Computing -- 1 Introduction -- 2 Outline of MEC and 5G -- 2.1 Fundamentals of MEC -- 2.2 Integration of MEC with 5G Systems -- 3 Overview of MEC/5G Researches -- 3.1 Internet of Things (IoT) Leveraging MEC -- 3.2 MEC with NOMA -- 3.3 MEC with Heterogeneous CRAN -- 3.4 MEC with UAV Communications -- 3.5 MEC with WPT and EH -- 4 Conclusions -- References -- Methodology to Ensure the Continuity of the Information Systems Service, Based on the Monitoring of Electrical Energy, Using IoT Technology -- 1 Introduction -- 2 Materials and Methods -- 2.1 Literature Review -- 2.2 Analysis of IoT Devices -- 2.3 Choice of Devices to Implement the Methodology -- 2.4 Device Configuration -- 2.5 Performance Analysis -- 2.6 Interpretation of Results -- 3 Results -- 3.1 Server Unit -- 3.2 Power and Control Units -- 3.3 Monitoring Units -- 3.4 Communication Units -- 3.5 Cooling Unit -- 3.6 Acquisition Units -- 3.7 IoT Units -- 3.8 Display Unit -- 4 Conclusions -- References.
Record Nr. UNINA-9910502640203321
Tiwari Rajeev  
Singapore : , : Springer Singapore Pte. Limited, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information and communication technology (ICT) frameworks in telehealth / / Mamta Mittal and Gopi Battineni, editors
Information and communication technology (ICT) frameworks in telehealth / / Mamta Mittal and Gopi Battineni, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Descrizione fisica 1 online resource (272 pages)
Disciplina 610.285
Collana TELe-Health
Soggetto topico Medical telematics
ISBN 3-031-05049-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910588595003321
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...