top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in contact angle, wettability and adhesion . Volume 4 / / edited by K.L. Mittal
Advances in contact angle, wettability and adhesion . Volume 4 / / edited by K.L. Mittal
Autore Mittal K. L
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2020]
Descrizione fisica 1 online resource (346 pages)
Disciplina 541.33
Soggetto topico Surface chemistry
ISBN 1-119-59330-1
1-119-59329-8
1-119-59255-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829902003321
Mittal K. L  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Progress in Adhesion and Adhesives, Volume 9
Progress in Adhesion and Adhesives, Volume 9
Autore Mittal K. L
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (483 pages)
Disciplina 620.199
ISBN 1-394-31508-2
1-394-31507-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 On the Usage of Hydrophobic and Icephobic Coatings for Aircraft Icing Mitigation -- 1.1 Introduction -- 1.2 Experimental Setup and Test Model -- 1.2.1 Icing Research Tunnel and the Test Model Used in the Present Study -- 1.2.2 Surface Coatings Used in the Present Study -- 1.2.3 Icing Test Conditions and Measurement Systems -- 1.3 Measurement Results and Discussion -- 1.3.1 Dynamic Ice Accretion Process Over the Airfoil Surfaces Treated with Different Surface Coatings -- 1.3.2 Comparison of the Anti-/De-Icing Performance of Hybrid Systems with Different Surface Coatings -- 1.3.3 IR Thermal Imaging Results to Quantify the Anti-/ De-Icing Process with Different Surface Coatings -- 1.3.4 Determination of the Minimum Electric Power Input Required for Anti-/De-Icing Operation -- 1.4 Summary -- Acknowledgments -- References -- Chapter 2 Hydrophobic Coatings: An Insight into Fundamental Concepts and Modern Applications -- 2.1 Introduction -- 2.1.1 Importance of Hydrophobic Coatings -- 2.1.2 Historical Background and Evolution of Hydrophobic Coatings -- 2.1.3 Fundamentals of Hydrophobic Coatings Surface Free Energy and Wettability -- 2.1.3.1 Surface Free Energy -- 2.1.3.2 Contact Angle -- 2.2 Practical Implications and Applications -- 2.2.1 Theoretical Background -- 2.2.1.1 Young's Equation -- 2.2.1.2 Wenzel Equation -- 2.2.1.3 Cassie-Baxter Equation -- 2.2.2 Contact Angle Hysteresis -- 2.3 Emergence of Synthetic Hydrophobic Coatings -- 2.3.1 Polymer Structure and Bioadhesion -- 2.3.2 Recent Advancements and Future Perspectives -- 2.4 Advancements in Coatings -- 2.4.1 Multifunctional and Self-Healing Coatings -- 2.4.1.1 Sustainable and Environmentally Friendly Coatings -- 2.4.2 Conventional Approaches -- 2.5 Emerging Approaches -- 2.5.1 Biomimetic Surface Topography.
2.5.2 Self-Assembled Monolayers (SAMs) -- 2.5.3 Organic Hydrophobic Coatings -- 2.5.3.1 Fluoropolymer Coatings -- 2.5.3.2 Silicone-Based Coatings -- 2.5.3.3 Acrylic-Based Coatings -- 2.5.3.4 Polyurethane Coatings -- 2.5.3.5 Epoxy-Based Coatings -- 2.5.3.6 Nanostructured Organic Coatings -- 2.5.4 Inorganic Hydrophobic Coatings -- 2.5.4.1 Fluorinated Inorganic Coatings -- 2.5.5 Potential Challenges and Limitations -- 2.6 Future Outlook and Research Opportunities -- 2.7 Summary -- References -- Chapter 3 Enhancement of Adhesion of Polymers by Plasma Treatment: A Critical Review -- 3.1 Introduction -- 3.2 Plasma Processes -- 3.2.1 Low-Temperature Plasma -- 3.2.2 Different Techniques for the Formation of a Low- Temperature Plasma Discharge -- 3.2.3 Advanced Technology Used for the Generation of Low-Temperature Plasma -- 3.2.4 Properties of Low-Temperature Plasma Discharge -- 3.3 Plasma-Polymer Interaction -- 3.3.1 Functionalization -- 3.3.2 Crosslinking -- 3.3.3 Surface Etching/Ablation -- 3.3.4 Deposition -- 3.4 Effects of Plasma Treatment of Various Polymers -- 3.4.1 Reactive Plasma -- 3.4.1.1 Surface Wettability -- 3.4.1.2 Surface Morphology -- 3.4.1.3 Surface Chemistry -- 3.4.2 Non-Reactive Plasma -- 3.4.2.1 Surface Wettability -- 3.4.2.2 Surface Morphology -- 3.4.2.3 Surface Chemistry -- 3.5 Improvement of Adhesion of Various Polymers by Plasma Treatment -- 3.5.1 Adhesion Theories -- 3.5.2 Effect of Reactive Plasma on Adhesion -- 3.5.3 Effect of Non-Reactive Plasma on Adhesion -- 3.6 Summary -- References -- Chapter 4 Hydrophobicity Modification of Artificial Leather by Atmospheric Pressure Plasma Treatment -- 4.1 Introduction -- 4.2 Atmospheric Pressure Plasma Treatment -- 4.3 Applications of Atmospheric Pressure Plasma -- 4.4 Leatherette -- 4.5 Changes in Hydrophobicity of Leatherettes After the Atmospheric Plasma Treatment -- 4.6 Results.
4.7 Summary -- Acknowledgements -- References -- Chapter 5 Sustainable Plasma Technology as Surface Treatment on Footwear Materials: A Review -- 5.1 Introduction to Plasma Technology as Surface Treatment -- 5.2 Plasma Technology in Footwear Industry -- 5.3 Types of Plasma Technology Used for Surface Treatment -- 5.4 Plasma Surface Treatment on Footwear Materials -- 5.4.1 The Multifaceted Effects of Plasma Treatment on Polymeric Materials -- 5.4.1.1 Cleaning with Plasma -- 5.4.1.2 Activation with Plasma -- 5.4.1.3 Etching with Plasma -- 5.4.1.4 Coating with Plasma -- 5.4.1.5 Material-Specific Treatments and Benefits -- 5.5 Characterization of Plasma Treated Footwear Materials -- 5.5.1 Chemical Composition -- 5.5.2 Surface Morphology -- 5.5.3 Surface Wettability -- 5.5.4 Adhesion Property -- 5.6 Plasma Technology in Combination with Other Sustainable Technologies in the Footwear Industry -- 5.6.1 Coupling with Renewable Energy -- 5.6.2 Synergy with Recycling and Upcycling Practices -- 5.6.3 Plasma and Biotechnology -- 5.6.4 Smart Manufacturing and IoT Integration -- 5.6.5 Collaborative Research and Development -- 5.7 Benefits and Limitations of Sustainable Plasma Technology for Reducing Environmental Impact -- 5.7.1 Benefits -- 5.7.2 Limitations -- 5.7.3 Solutions -- 5.8 Tips and Best Practices -- 5.9 Summary and Prospects -- References -- Chapter 6 Bromination - The Only Selective Plasma Process -- 6.1 Introduction -- 6.2 Reaction Mechanisms of Chemical Bromination -- 6.2.1 Chemical Bromination of Hydrocarbons and Polyolefins -- 6.2.2 Bromination of Unsaturations -- 6.2.3 Bromination of Graphene Substrates -- 6.2.4 Bromination of Related Carbon Materials -- 6.3 Plasmachemical Bromination -- 6.3.1 Polyolefins -- 6.3.2 Competition Between Bromination and Oxidation via Peroxide Formation -- 6.3.3 Coating of Polyolefins with Br-Containing Thin Films.
6.3.4 Plasma Bromination of Graphene -- 6.3.5 Carbon Nanotubes -- 6.3.6 Coating of Polyolefins with Br-Carrying Plasma Polymers -- 6.4 Reactions at C-Br Moieties -- 6.4.1 Nucleophilic Substitution of C-Br at Polyolefins -- 6.4.2 Nucleophilic Substitution of C-Br at Carbon Materials -- 6.4.3 Post-Plasma Gas Phase Substitution -- 6.4.4 Catalytic Effect of Brominated Materials -- 6.5 Summary -- Acknowledgement -- References -- Chapter 7 Structural Bonding to Low Surface Energy (LSE) Materials -- 7.1 Introduction -- 7.2 Types of Low Surface Energy Materials -- 7.2.1 Polypropylene (PP) -- 7.2.2 Polyethylene (PE) -- 7.2.3 Polytetrafluoroethylene (PTFE) -- 7.3 Why are LSE Materials Hard to Bond? -- 7.3.1 Poor Surface Chemistry and Surface Energy -- 7.3.1.1 Surface Energy -- 7.3.1.2 Surface Energy and Wetting -- 7.3.2 Limited Diffusion -- 7.3.3 Limited Chemical Bond Formation -- 7.4 Bonding to LSE Materials -- 7.4.1 Surface Treatment -- 7.4.1.1 Cleaning the Surface -- 7.4.1.2 Flame Treatment -- 7.4.1.3 Plasma Treatment -- 7.4.1.4 Laser Treatment -- 7.4.1.5 Chemical Treatment -- 7.4.1.6 UV Radiation Treatment -- 7.4.2 Adhesive Bonding to LSE Materials -- 7.4.2.1 Thermosetting Acrylic Adhesives -- 7.4.2.2 Pressure-Sensitive Acrylic Adhesives -- 7.4.2.3 Cyanoacrylate Adhesive -- 7.4.2.4 Diazirine Adhesives -- 7.5 Summary -- References -- Chapter 8 A Review on the Effects of a Defect and/or Joint Geometry on Stress Distribution in Tubular Joints Under Tensile Loads -- 8.1 Introduction -- 8.2 Stress Distribution in Adhesively Bonded Joints Under Tensile Loads -- 8.2.1 Governing Linear Elasticity Equations for a Tubular Single Lap Joint Under a Tensile Load -- 8.2.1.1 Governing Linear Elasticity Equations for a Defect-Free Tubular Single Lap Joint Under a Tensile Load.
8.2.1.2 Governing Linear Elasticity Equations for a Defective Tubular Single Lap Joint Under a Tensile Load Hosting a Cylindrical Void -- 8.2.1.3 Governing Linear Elasticity Equations for a Defective Tubular Single Lap Joint Under a Tensile Load Hosting a Cylindrical Debond -- 8.2.1.4 Solution for Stress Distribution in the Adhesive Layer of a Tubular Joint Under a Tensile Load -- 8.3 Estimation of Stress Concentration Factor in the Welded Tubular Joints Under Axial Brace Loads -- 8.3.1 Estimation of Stress Concentration Factors in Welded T-, K-, and TK-Joints Under Axial Brace Loads -- 8.3.2 Estimation of Stress Concentration Factors in the Welded T- and TK-Joints with Unequal Brace Diameters Under Axial Brace Loads -- 8.3.3 More General Expressions for Variation of Stress Concentration Factors in the Tubular Welded Joints -- 8.3.3.1 T- and Y-Joints -- 8.3.3.2 DTK-Joint -- 8.4 Stress Distribution in Welded T-Joints Stiffened by Fiber- Reinforced Polymer (FRP) Under Axial Brace Load -- 8.5 Summary -- References -- Chapter 9 Failure Cases in Adhesive Joints and Coatings -- 9.1 Introduction -- 9.1.1 General -- 9.1.2 Parameters Affecting Joint Strength Leading to Failure -- 9.1.2.1 Residual Stresses -- 9.1.2.2 External Temperature and Humidity -- 9.1.2.3 External Stress -- 9.1.2.4 Adhesive Thickness -- 9.1.2.5 Non-Parallel Adherends -- 9.1.2.6 Surface Treatment -- 9.1.3 Causes of Failure -- 9.1.4 Modes of Failure -- 9.1.5 Determination of Failures -- 9.1.5.1 Visual Inspection -- 9.1.5.2 Non-Destructive Testing (NDT) -- 9.1.5.3 Mechanical Testing -- 9.1.5.4 Chemical Analysis -- 9.1.5.5 Verification -- 9.1.6 Analytical Techniques -- 9.1.6.1 Scanning Electron Microscopy (SEM) -- 9.1.6.2 Fourier-Transform Infrared Spectroscopy (FTIR) -- 9.1.6.3 Differential Scanning Calorimetry (DSC) -- 9.1.6.4 Acoustic Emission (AE) -- 9.1.6.5 Microhardness Testing.
9.1.7 Stages in Failure Analysis.
Record Nr. UNINA-9911019441403321
Mittal K. L  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui