The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others]
| The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others] |
| Autore | Mitrea Dorina |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 |
| Descrizione fisica | 1 online resource (528 pages) |
| Disciplina | 516.3/73 |
| Collana | De Gruyter Studies in Mathematics |
| Soggetto topico |
Riemannian manifolds
Boundary value problems |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-11-048339-4
3-11-048438-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1. Introduction and Statement of Main Results -- 2. Geometric Concepts and Tools -- 3. Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains -- 4. Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains -- 5. Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains -- 6. Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains -- 7. Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism -- 8. Additional Results and Applications -- 9. Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis -- Bibliography -- Index -- Backmatter |
| Record Nr. | UNINA-9910465984603321 |
Mitrea Dorina
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others]
| The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others] |
| Autore | Mitrea Dorina |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 |
| Descrizione fisica | 1 online resource (528 pages) |
| Disciplina | 516.3/73 |
| Collana | De Gruyter Studies in Mathematics |
| Soggetto topico |
Riemannian manifolds
Boundary value problems |
| ISBN |
3-11-048339-4
3-11-048438-2 |
| Classificazione | SK 540 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1. Introduction and Statement of Main Results -- 2. Geometric Concepts and Tools -- 3. Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains -- 4. Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains -- 5. Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains -- 6. Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains -- 7. Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism -- 8. Additional Results and Applications -- 9. Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis -- Bibliography -- Index -- Backmatter |
| Record Nr. | UNINA-9910798732003321 |
Mitrea Dorina
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others]
| The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others] |
| Autore | Mitrea Dorina |
| Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 |
| Descrizione fisica | 1 online resource (528 pages) |
| Disciplina | 516.3/73 |
| Collana | De Gruyter Studies in Mathematics |
| Soggetto topico |
Riemannian manifolds
Boundary value problems |
| ISBN |
3-11-048339-4
3-11-048438-2 |
| Classificazione | SK 540 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- 1. Introduction and Statement of Main Results -- 2. Geometric Concepts and Tools -- 3. Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains -- 4. Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains -- 5. Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains -- 6. Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains -- 7. Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism -- 8. Additional Results and Applications -- 9. Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis -- Bibliography -- Index -- Backmatter |
| Record Nr. | UNINA-9910811007203321 |
Mitrea Dorina
|
||
| Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||