top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bio-inspired computing for information retrieval applications / / D. P. Acharjya and Anirban Mitra
Bio-inspired computing for information retrieval applications / / D. P. Acharjya and Anirban Mitra
Autore Acharjya D. P.
Pubbl/distr/stampa Hershey, Pennsylvania : , : IGI Global, , 2017
Descrizione fisica 1 online resource (411 pages)
Disciplina 005.74
Collana Advances in Knowledge Acquisition, Transfer, and Management (AKATM) Book Series
Soggetto topico Natural computation
Information storage and retrieval systems
Querying (Computer science)
Database searching
Soggetto genere / forma Electronic books.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910164874403321
Acharjya D. P.  
Hershey, Pennsylvania : , : IGI Global, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning in Data Analytics : Recent Techniques, Practices and Applications
Deep Learning in Data Analytics : Recent Techniques, Practices and Applications
Autore Acharjya Debi Prasanna
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (271 pages)
Altri autori (Persone) MitraAnirban
ZamanNoor
Collana Studies in Big Data Ser.
Soggetto genere / forma Electronic books.
ISBN 3-030-75855-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Acronyms -- Part I Theoretical Foundation of Deep Learning Theory and Analysis -- A Study on Discrete Action Sequences Using Deep Emotional Intelligence -- 1 Introduction -- 2 Emotion Recognition from Static Action Sequences -- 3 Feature Descriptions -- 3.1 Block Based Intensity Value Feature Extraction -- 3.2 Different Bin Level HoG Feature Extraction -- 3.3 K Nearest Neighbor -- 3.4 Random Forest Classifier -- 3.5 Support Vector Machine -- 3.6 GEMEP Dataset -- 4 Performance Evaluations -- 4.1 Performance Measure of BBIV Feature with KNN, RF and SVM -- 4.2 Performance Measure of DBLHOG Feature with KNN, RF and SVM -- 5 Deep Emotional Intelligence -- 5.1 Non-Deep Learning Based Methods -- 5.2 Deep Learning Based Model -- 6 Conclusion -- References -- A Novel Noise Removal Technique Influenced by Deep Convolutional Autoencoders on Mammograms -- 1 Introduction -- 2 Related Works -- 3 Preliminaries of Convolutional Autoencoder -- 3.1 Denoise Model for Mammogram Images -- 3.2 Denoise Autoencoder for Noisy Mammogram -- 4 Research Methodology -- 4.1 Denoising Autoencoder with Batch Normalization and Dropout -- 4.2 Training -- 4.3 Loss Function -- 5 Result and Discussion -- 5.1 Experimental Setup and Validation -- 5.2 Metrics and Baseline Method -- 5.3 Analysis of Different Parameters -- 5.4 Subjective Analysis -- 5.5 Objective Analysis -- 5.6 Discussion -- 6 Conclusion and Future Extension -- References -- A High Security Framework Through Human Brain Using Algo Mixture Model Deep Learning Algorithm -- 1 Introduction -- 2 Machine Learning Trends -- 2.1 Current Trends of Machine Intelligence in Real World -- 3 Related Research Works -- 3.1 Deep Learning Algorithms -- 4 Proposed Design -- 4.1 Proposed Algorithm -- 5 Eperimental Results and Discussions -- 5.1 Performance Measures.
5.2 Result Analysis -- 6 Conclusion and Further Research Directions -- References -- Knowledge Framework for Deep Learning: Congenital Heart Disease -- 1 Introduction -- 2 Materials and Methods -- 3 Coronary Heart Disease Knowledge Framework -- 3.1 Pre-processing -- 3.2 Data Transformation -- 3.3 Classifier -- 4 Accuracy Measures -- 4.1 Training Data and Cross Validation -- 4.2 Predictive Data Mining and Knowledge Discovery -- 4.3 Decision Making and Future Policies -- 5 Experimental Results -- 6 Conclusion and Discussion -- References -- Part II Computing System and Machine Learning -- Automatic Image Segmentation by Ranking Based SVM in Convolutional Neural Network on Diabetic Fundus Image -- 1 Introduction -- 2 Related Work -- 3 Background Preliminaries -- 3.1 Ranking SVM -- 3.2 Convolutional Neural Network -- 3.3 Dropout, ReLU, and Batch Normalization -- 3.4 Framework of the SVM with CNNs -- 4 Designed RSVM with CNNs Segmentation Method -- 4.1 CNNs Architecture for Segmentation -- 4.2 Initialization -- 4.3 Training -- 4.4 Test Phase -- 4.5 Post-processing -- 5 Experimental Results and Analysis -- 5.1 Benchmark Data -- 5.2 Performance Metrics -- 5.3 Segmentation Results Comparison and Analysis -- 6 Conclusion -- References -- Deep Learning in Healthcare -- 1 Introduction -- 2 Machine Learning -- 2.1 Supervised Learning -- 2.2 Unsupervised Learning -- 2.3 Reinforcement Learning -- 2.4 Semi Supervised and Active Learning -- 3 Deep Learning -- 3.1 Deep Generative Models -- 4 Deep Learning in Healthcare -- 4.1 Deep Learning in Cancer Detection -- 4.2 Deep Learning in Alzeihmer's Detection -- 4.3 Deep Learning in Parkinson's Detection -- 4.4 Deep Learning in Diabetes Detection -- 5 Conclusions -- References -- On the Study of Machine Learning Algorithms Towards Healthcare Applications -- 1 Introduction -- 2 Machine Learning.
2.1 Artificial Neural Network -- 2.2 Classification and Clustering -- 3 Healthcare Consortium -- 3.1 Hospital Sector -- 3.2 Pharmaceutical Sector -- 3.3 Personalized Medication -- 3.4 Chemoinformatics -- 3.5 Diagnostic -- 3.6 Drug Discovery -- 3.7 Medical Equipments and Supplies -- 3.8 Medical Insurance -- 3.9 Telemedicine -- 4 Conclusion -- References -- A Predictive Data Analytic Approach to Get Insight of Healthcare Databases -- 1 Introduction -- 2 Data Mining for Congenital Heart Defects -- 3 Material and Method -- 3.1 Data Analytics Approach Using Hierarchical Clustering -- 4 Results and Discussions -- 5 Conclusion -- References -- Part III Deep Learning Algorithms -- A Survey on Deep Learning Methodologies of Recent Applications -- 1 Introduction -- 2 Computer Vision and Pattern Recognition -- 2.1 Automatic Image Colorization with Simultaneous Classification -- 2.2 Pixel Recursive Super Resolution -- 2.3 Real-Time Multi-person Pose Estimation -- 2.4 Generating Image Descriptions -- 2.5 Real-Time Analysis of Behaviors -- 2.6 Iterating Images to Generate New Objects -- 2.7 Real-Time Visual Translation -- 3 Robotics and Automation -- 3.1 Self Driving Cars -- 3.2 Robotics -- 3.3 The OpenAI Universe -- 4 Generation of Sound -- 4.1 Generation of Voice -- 4.2 Restoration of Sound in Videos -- 5 Generation of Art -- 5.1 Image Style Transfer on Famous Paintings -- 5.2 Automatic Generation of Textual Scripts -- 6 Computed Predictions -- 6.1 Deep Neural Networks Dreaming -- 6.2 Predicting Earthquakes -- 7 Conclusion -- References -- An Extensive Study of Privacy Preserving Recommendation System Using Collaborative Filtering -- 1 Introduction -- 2 Recommendation System Foundations -- 2.1 Phases of Recommendation System -- 3 Filtering Techniques Based Recommendation System -- 3.1 Content Based Filtering Recommendation System.
3.2 Collaborative Filtering Recommendation System -- 3.3 Hybrid Filtering Recommendation System -- 4 Security and Privacy Based Collaborative Filtering Techniques in Recommendation System -- 5 Related Work and Original Contribution -- 6 Experimental Result -- 7 Conclusion -- References -- A Comparative Study of Nature-Inspired Algorithm Based Hybrid Neural Network Training Algorithms in Data Classification -- 1 Introduction -- 2 Proposed Method -- 2.1 Back-Propagation Algorithm -- 2.2 Genetic Algorithm Based Neural Network Training -- 2.3 Nature Inspired Algorithm Based Optimization -- 3 Experimental Analysis -- 4 Conclusion -- References -- Anomaly Credit Card Fraud Detection Using Deep Learning -- 1 Introduction -- 2 Machine Learning Techniques -- 3 Credit Card Fraud Detection -- 4 Deep Learning -- 5 Anomaly Credit Card Fraud Detection Model Using Deep Learning -- 5.1 Proposed Model Block Diagram -- 5.2 Implementation of Proposed Model -- 5.3 Result Analysis and Evaluation -- 6 Conclusion and Future Work -- References -- Part IV Applications of Deep Learning Techniques -- Application of Deep Learning for Energy Management in Smart Grid -- 1 Introduction -- 2 Literature Review -- 3 Deep Learning Techniques -- 3.1 Feedforward Neural Network -- 3.2 Recurrent Neural Network -- 3.3 Long Short Term Memory Network -- 3.4 Gated Recurrent Unit Neural Network -- 3.5 Deep Belief Network -- 3.6 Convolutional Neural Network -- 4 Application of Deep Learning Technique in Smart Grid -- 4.1 Deep Learning STLF -- 4.2 Deep Learning on MTLF -- 4.3 Deep Learning on LTLF -- 4.4 Deep Learning in Demand-Side Management for Smart Charging in Smart Vehicle -- 5 Conclusions -- References -- Cost Optimization of Software Quality Assurance -- 1 Introduction -- 2 Related Work -- 2.1 Defect Types -- 2.2 Quality Assurance -- 3 State of Art.
4 Value Finances in Terms of Quality Economics -- 4.1 Various Cases -- 5 Cost Optimization -- 6 Conclusion -- References -- Analytical Approach for Security of Sensitive Business Cloud -- 1 Introduction -- 2 Literature Review -- 3 Security Methodology -- 4 Development of Business Cloud -- 4.1 Use and Convenience -- 4.2 Cost Reduction -- 4.3 Reliability -- 4.4 Security and Privacy -- 5 Conclusion -- References.
Altri titoli varianti Deep Learning in Data Analytics
Record Nr. UNINA-9910497109903321
Acharjya Debi Prasanna  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep learning in data analytics : recent techniques, practices and applications / / Debi Prasanna Acharjya, Anirban Mitra, Noor Zaman, editors
Deep learning in data analytics : recent techniques, practices and applications / / Debi Prasanna Acharjya, Anirban Mitra, Noor Zaman, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (271 pages)
Disciplina 006.31
Collana Studies in Big Data
Soggetto topico Machine learning
Big data
ISBN 3-030-75855-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Acronyms -- Part I Theoretical Foundation of Deep Learning Theory and Analysis -- A Study on Discrete Action Sequences Using Deep Emotional Intelligence -- 1 Introduction -- 2 Emotion Recognition from Static Action Sequences -- 3 Feature Descriptions -- 3.1 Block Based Intensity Value Feature Extraction -- 3.2 Different Bin Level HoG Feature Extraction -- 3.3 K Nearest Neighbor -- 3.4 Random Forest Classifier -- 3.5 Support Vector Machine -- 3.6 GEMEP Dataset -- 4 Performance Evaluations -- 4.1 Performance Measure of BBIV Feature with KNN, RF and SVM -- 4.2 Performance Measure of DBLHOG Feature with KNN, RF and SVM -- 5 Deep Emotional Intelligence -- 5.1 Non-Deep Learning Based Methods -- 5.2 Deep Learning Based Model -- 6 Conclusion -- References -- A Novel Noise Removal Technique Influenced by Deep Convolutional Autoencoders on Mammograms -- 1 Introduction -- 2 Related Works -- 3 Preliminaries of Convolutional Autoencoder -- 3.1 Denoise Model for Mammogram Images -- 3.2 Denoise Autoencoder for Noisy Mammogram -- 4 Research Methodology -- 4.1 Denoising Autoencoder with Batch Normalization and Dropout -- 4.2 Training -- 4.3 Loss Function -- 5 Result and Discussion -- 5.1 Experimental Setup and Validation -- 5.2 Metrics and Baseline Method -- 5.3 Analysis of Different Parameters -- 5.4 Subjective Analysis -- 5.5 Objective Analysis -- 5.6 Discussion -- 6 Conclusion and Future Extension -- References -- A High Security Framework Through Human Brain Using Algo Mixture Model Deep Learning Algorithm -- 1 Introduction -- 2 Machine Learning Trends -- 2.1 Current Trends of Machine Intelligence in Real World -- 3 Related Research Works -- 3.1 Deep Learning Algorithms -- 4 Proposed Design -- 4.1 Proposed Algorithm -- 5 Eperimental Results and Discussions -- 5.1 Performance Measures.
5.2 Result Analysis -- 6 Conclusion and Further Research Directions -- References -- Knowledge Framework for Deep Learning: Congenital Heart Disease -- 1 Introduction -- 2 Materials and Methods -- 3 Coronary Heart Disease Knowledge Framework -- 3.1 Pre-processing -- 3.2 Data Transformation -- 3.3 Classifier -- 4 Accuracy Measures -- 4.1 Training Data and Cross Validation -- 4.2 Predictive Data Mining and Knowledge Discovery -- 4.3 Decision Making and Future Policies -- 5 Experimental Results -- 6 Conclusion and Discussion -- References -- Part II Computing System and Machine Learning -- Automatic Image Segmentation by Ranking Based SVM in Convolutional Neural Network on Diabetic Fundus Image -- 1 Introduction -- 2 Related Work -- 3 Background Preliminaries -- 3.1 Ranking SVM -- 3.2 Convolutional Neural Network -- 3.3 Dropout, ReLU, and Batch Normalization -- 3.4 Framework of the SVM with CNNs -- 4 Designed RSVM with CNNs Segmentation Method -- 4.1 CNNs Architecture for Segmentation -- 4.2 Initialization -- 4.3 Training -- 4.4 Test Phase -- 4.5 Post-processing -- 5 Experimental Results and Analysis -- 5.1 Benchmark Data -- 5.2 Performance Metrics -- 5.3 Segmentation Results Comparison and Analysis -- 6 Conclusion -- References -- Deep Learning in Healthcare -- 1 Introduction -- 2 Machine Learning -- 2.1 Supervised Learning -- 2.2 Unsupervised Learning -- 2.3 Reinforcement Learning -- 2.4 Semi Supervised and Active Learning -- 3 Deep Learning -- 3.1 Deep Generative Models -- 4 Deep Learning in Healthcare -- 4.1 Deep Learning in Cancer Detection -- 4.2 Deep Learning in Alzeihmer's Detection -- 4.3 Deep Learning in Parkinson's Detection -- 4.4 Deep Learning in Diabetes Detection -- 5 Conclusions -- References -- On the Study of Machine Learning Algorithms Towards Healthcare Applications -- 1 Introduction -- 2 Machine Learning.
2.1 Artificial Neural Network -- 2.2 Classification and Clustering -- 3 Healthcare Consortium -- 3.1 Hospital Sector -- 3.2 Pharmaceutical Sector -- 3.3 Personalized Medication -- 3.4 Chemoinformatics -- 3.5 Diagnostic -- 3.6 Drug Discovery -- 3.7 Medical Equipments and Supplies -- 3.8 Medical Insurance -- 3.9 Telemedicine -- 4 Conclusion -- References -- A Predictive Data Analytic Approach to Get Insight of Healthcare Databases -- 1 Introduction -- 2 Data Mining for Congenital Heart Defects -- 3 Material and Method -- 3.1 Data Analytics Approach Using Hierarchical Clustering -- 4 Results and Discussions -- 5 Conclusion -- References -- Part III Deep Learning Algorithms -- A Survey on Deep Learning Methodologies of Recent Applications -- 1 Introduction -- 2 Computer Vision and Pattern Recognition -- 2.1 Automatic Image Colorization with Simultaneous Classification -- 2.2 Pixel Recursive Super Resolution -- 2.3 Real-Time Multi-person Pose Estimation -- 2.4 Generating Image Descriptions -- 2.5 Real-Time Analysis of Behaviors -- 2.6 Iterating Images to Generate New Objects -- 2.7 Real-Time Visual Translation -- 3 Robotics and Automation -- 3.1 Self Driving Cars -- 3.2 Robotics -- 3.3 The OpenAI Universe -- 4 Generation of Sound -- 4.1 Generation of Voice -- 4.2 Restoration of Sound in Videos -- 5 Generation of Art -- 5.1 Image Style Transfer on Famous Paintings -- 5.2 Automatic Generation of Textual Scripts -- 6 Computed Predictions -- 6.1 Deep Neural Networks Dreaming -- 6.2 Predicting Earthquakes -- 7 Conclusion -- References -- An Extensive Study of Privacy Preserving Recommendation System Using Collaborative Filtering -- 1 Introduction -- 2 Recommendation System Foundations -- 2.1 Phases of Recommendation System -- 3 Filtering Techniques Based Recommendation System -- 3.1 Content Based Filtering Recommendation System.
3.2 Collaborative Filtering Recommendation System -- 3.3 Hybrid Filtering Recommendation System -- 4 Security and Privacy Based Collaborative Filtering Techniques in Recommendation System -- 5 Related Work and Original Contribution -- 6 Experimental Result -- 7 Conclusion -- References -- A Comparative Study of Nature-Inspired Algorithm Based Hybrid Neural Network Training Algorithms in Data Classification -- 1 Introduction -- 2 Proposed Method -- 2.1 Back-Propagation Algorithm -- 2.2 Genetic Algorithm Based Neural Network Training -- 2.3 Nature Inspired Algorithm Based Optimization -- 3 Experimental Analysis -- 4 Conclusion -- References -- Anomaly Credit Card Fraud Detection Using Deep Learning -- 1 Introduction -- 2 Machine Learning Techniques -- 3 Credit Card Fraud Detection -- 4 Deep Learning -- 5 Anomaly Credit Card Fraud Detection Model Using Deep Learning -- 5.1 Proposed Model Block Diagram -- 5.2 Implementation of Proposed Model -- 5.3 Result Analysis and Evaluation -- 6 Conclusion and Future Work -- References -- Part IV Applications of Deep Learning Techniques -- Application of Deep Learning for Energy Management in Smart Grid -- 1 Introduction -- 2 Literature Review -- 3 Deep Learning Techniques -- 3.1 Feedforward Neural Network -- 3.2 Recurrent Neural Network -- 3.3 Long Short Term Memory Network -- 3.4 Gated Recurrent Unit Neural Network -- 3.5 Deep Belief Network -- 3.6 Convolutional Neural Network -- 4 Application of Deep Learning Technique in Smart Grid -- 4.1 Deep Learning STLF -- 4.2 Deep Learning on MTLF -- 4.3 Deep Learning on LTLF -- 4.4 Deep Learning in Demand-Side Management for Smart Charging in Smart Vehicle -- 5 Conclusions -- References -- Cost Optimization of Software Quality Assurance -- 1 Introduction -- 2 Related Work -- 2.1 Defect Types -- 2.2 Quality Assurance -- 3 State of Art.
4 Value Finances in Terms of Quality Economics -- 4.1 Various Cases -- 5 Cost Optimization -- 6 Conclusion -- References -- Analytical Approach for Security of Sensitive Business Cloud -- 1 Introduction -- 2 Literature Review -- 3 Security Methodology -- 4 Development of Business Cloud -- 4.1 Use and Convenience -- 4.2 Cost Reduction -- 4.3 Reliability -- 4.4 Security and Privacy -- 5 Conclusion -- References.
Record Nr. UNINA-9910523003903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Tumor Microenvironment of High Grade Serous Ovarian Cancer / Kenneth P. Nephew, Anirban Mitra, M. Sharon Stack, Joanna E. Burdette
The Tumor Microenvironment of High Grade Serous Ovarian Cancer / Kenneth P. Nephew, Anirban Mitra, M. Sharon Stack, Joanna E. Burdette
Autore Nephew Kenneth P
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (434 p.)
Soggetto topico Biology, life sciences
Soggetto non controllato ovarian cancer
transcriptomic
stroma
immune cells
epigenetics
recurrence
immunotherapies
chemoresistance
fibroblasts
metastasis
genomic
tumor microenvironment
cancer stem cells
ISBN 9783038975557
3038975559
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346663003321
Nephew Kenneth P  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui