L-system fractals [[electronic resource] /] / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910457254903321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals [[electronic resource] /] / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910784591903321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
L-system fractals / / J. Mishra, S.N. Mishra |
Autore | Mishra Jibitesh |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina | 006.3/7 |
Altri autori (Persone) | MishraS. N (Sarojananda N.) |
Collana | Mathematics in science and engineering |
Soggetto topico |
Computer vision
L systems Fractals |
ISBN |
1-280-75187-8
9786610751877 0-08-046938-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright Page; Preface; Table of Contents; Chapter 1 Introduction to Fractals; 1.1 Overview of fractals; 1.2 Fractals vs. Computer Graphics; 1.2.1 Chaotic Systems; 1.2.2 Strange Attractor; 1.2.3 Newton Raphson; 1.3 Fractal Geometry; 1.4 Categories of Fractals; 1.4.1 Geometrical fractals; 1.4.2 Algebraic fractals; 1.4.3 Stochastic fractals; 1.5 Fractals and Non-fractal Objects; 1.5.1 The sizes of the features of the fractal and non-fractal objects; 1.5.2 The four measure properties of fractal; 1.6 Defining a fractal; 1.6.1 Definitions of related terms; 1.6.2 Definition of fractal
1.7 Applications for Fractals1.8 Summary; Chapter 2 Fractals and L-System; 2.1 Reviews on L-system; 2.2 Parallel grammars: A phenomenon; 2.3 L-Systems; 2.3.1 D0L-system; 2.3.2 Fractals and graphic interpretation of strings; 2.3.3 Bracketed L-systems and models of plants architecture; 2.3.4 L-systems and Genetic Algorithms; 2.4 Basic definitions of L-Systems; 2.4.1 Fibonacci L-system; 2.4.2 Types of L-systems; 2.4.3 Thue-Morse L-system; 2.4.4 Paper folding and the Dragon curve; 2.5 Turtle graphics and L-systems; 2.5.1 Branching and bracketed L-systems 2.5.2 Famous L-systems of mathematical history2.5.3 Self-similarity and scaling; 2.6 Summary; Chapter 3 Interactive Generation of Fractal Images; 3.1 IFS and Fractals; 3.2 Generation of Fractals; 3.2.1 Multi Lens Copy Machines; 3.3 Computer Implementation; 3.3.1 The Random Algorithm; 3.4 Designing Fractals; 3.4.1 How does the program work; 3.5 Software Package; 3.5.1 Background; 3.5.2 Computer Implementation; 3.5.3 Sample Output; 3.6 Mathematical Expression of IFS; 3.6.1 RIFS; 3.6.2 Modified MRCM; 3.7 Summary; Chapter 4 Generation of a Class of Hybrid Fractals; 4.1 Background 4.1.1 Parallel grammar: A critical review4.1.2 Rules for biological phenomenon; 4.1.3 Some definitions and examples; 4.1.4 Applications of L-System; 4.1.5 Turtle graphics vs L-System; 4.1.6 Generation of fractal figures; 4.1.7 About L-System; 4.1.8 An L-system example; 4.1.9 Representing mathematical sequence in L-System; 4.2 The Approach; 4.2.1 Assumptions; 4.2.2 Combination of L-Systems; 4.2.3 The new L-System or the Hybrid L-System; 4.2.4 The Algorithm; 4.3 Experimentally Generated Fractals; 4.3.1 Fractal figures for Fibonacci sequence and Koch curve 4.3.2 Fractal figures for Mathematical series 1 to n and Koch curve4.3.3 Fractal figures based on different combinations; 4.4 Variation on Koch Curves; 4.5 Fractals with other Mathematical Sequences; 4.6 Interpretation of Result; 4.6.1 Comparison of Koch curve with Hybrid system; 4.6.2 Arbitrary Figures; 4.7 Summary; Chapter 5 L-System Strings from Ramification Matrix; 5.1 Definition of Terms; 5.1.1 Modules; 5.1.2 Productions; 5.2 Parallel Rewriting Systems; 5.3 An Elementary L-System Parser; 5.3.1 The structure of an L-System module; 5.3.2 L-System strings 5.3.3 Rewriting the L-System string |
Record Nr. | UNINA-9910824561503321 |
Mishra Jibitesh | ||
Amsterdam ; ; Boston, MA, : Elsevier B. V., 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|