Advances in Soil Microbiology: Recent Trends and Future Prospects : Volume 2: Soil-Microbe-Plant Interaction / / edited by Tapan Kumar Adhya, Bibhuti Bhusan Mishra, K. Annapurna, Deepak Kumar Verma, Upendra Kumar |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (VII, 238 p. 11 illus., 10 illus. in color.) |
Disciplina | 579.1757 |
Collana | Microorganisms for Sustainability |
Soggetto topico |
Microbiology
Microbial genetics Microbial genomics Ecotoxicology Eukaryotic Microbiology Microbial Genetics and Genomics |
ISBN | 981-10-7380-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Soil Microbial Diversity (Baliyarsingh) -- Chapter 2: Microbial Diversity and Soil Health in Tropical Agro-ecosystem (Chourasiya) -- Chapter 3: Plant Growth Promoting Microbes (PGPM) as Potential microbial bio-agents for eco-friendly Agriculture (Gangwar) -- Chapter 4: Plant Growth Promoting Rhrizobacteria in abiotic stress alleviation in crops (Paul) -- Capter 5: Phosphate Solubilizing Microorganisms in Sustainable Agriculture (Pradhan) -- Chapter 6: Arbuscular Mycorrhizal fungi (AMF) for sustainable rice production (Paneerselvam) -- Chapter 7: Biological Nitrogen Fixation in Cereal Crops (Garcha) -- Chapter 8: Biological Control as a Tool for Eco-friendly Management of Plant Pathogens (Sharma) -- Chapter 9: Biological control of insect pests for sustainable agriculture (Sindhu) -- Chapter 10: Soil organic matter and microbial role in plant productivity and soil fertility (Biswas). |
Record Nr. | UNINA-9910255451003321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environmental and agricultural microbiology : applications for sustainability / / edited by Bibhuti Bhusan Mishra [and three others] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2021] |
Descrizione fisica | 1 online resource (393 pages) |
Disciplina | 579 |
Soggetto topico |
Sustainable agriculture
Microbial ecology Agricultural microbiology |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-52672-8
1-119-52589-6 1-119-52674-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Table of Contents -- Title page -- Copyright -- Preface -- Part 1 MICROBIAL BIOREMEDIATION AND BIOPOLYMER TECHNOLOGY -- 1 A Recent Perspective on Bioremediation of Agrochemicals by Microalgae: Aspects and Strategies -- 1.1 Introduction -- 1.2 Pollution Due to Pesticides -- 1.3 Microalgal Species Involved in Bioremediation of Pesticides -- 1.4 Strategies for Phycoremediation of Pesticides -- 1.5 Molecular Aspects of Pesticide Biodegradation by Microalgae -- 1.6 Factor Affecting Phycoremediation of Pesticides -- 1.7 Benefit and Shortcomings of Phycoremediation -- 1.8 Conclusion and Future Prospects -- References -- 2 Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review -- 2.1 Introduction -- 2.2 Effects of Hexavalent Chromium Toxicity -- 2.3 Chromium Bioremediation by Microalgae -- 2.4 Mechanism Involved in Hexavalent Chromium Reduction in Microalgae -- 2.5 Conclusion -- References -- 3 Biodetoxification of Heavy Metals Using Biofilm Bacteria -- 3.1 Introduction -- 3.2 Source and Toxicity of Heavy Metal Pollution -- 3.3 Biofilm Bacteria -- 3.4 Interaction of Metal and Biofilm Bacteria -- 3.5 Biodetoxification Mechanisms -- 3.6 Conclusion -- References -- 4 Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects -- 4.1 Introduction -- 4.2 Polyamides -- 4.3 Polylactic Acid -- 4.4 Polyhydroxyalkanoates -- 4.5 Conclusion and Future Development -- References -- 5 A Review on PHAs: The Future Biopolymer -- 5.1 Introduction -- 5.2 Green Plastic: Biodegradable Polymer Used as Plastic -- 5.3 Difference Between Biopolymer and Bioplastic -- 5.4 Polyhydroxyalkanoates -- 5.5 Polyhydroxyalkanoates and Its Applications -- 5.6 Microorganisms Producing PHAs -- 5.7 Advantages -- 5.8 Conclusion and Future Prospective -- References -- 6 Polyhydroxybutyrate as an Eco-Friendly Alternative of Synthetic Plastics.
6.1 Introduction -- 6.2 Bioplastics -- 6.4 Classification of Biodegradable Polymers -- 6.5 PHB-Producing Bacteria -- 6.6 Methods for Detecting PHB Granules -- 6.7 Biochemical Pathway for Synthesis of PHB -- 6.8 Production of PHB -- 6.9 Production of PHB Using Genetically Modified Organisms -- 6.10 Characterization of PHB -- 6.11 Various Biochemical Techniques Used for PHB Characterization -- 6.12 Biodegradation of PHB -- 6.13 Application Spectrum of PHB -- 6.14 Conclusion -- 6.15 Future Perspectives -- Acknowledgements -- References -- 7 Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications -- Abbreviations -- 7.1 Introduction -- 7.2 Conventional Plastics and Its Issues in Utility -- 7.3 Bioplastics -- 7.4 Fermentation for PHAs Production -- 7.5 Downstream Process for PHAs -- 7.6 Conclusions -- References -- 8 Polyhydroxyalkanoates for Sustainable Smart Packaging of Fruits -- 8.1 Introduction -- 8.2 Physiological Changes of Fresh Fruits During Ripening and Minimal Processing -- 8.3 Smart Packaging -- 8.4 Biodegradable Polymers for Fruit Packaging -- 8.5 Legal Aspects of Smart Packaging -- 8.6 Pros and Cons of Smart Packaging Using PHAs -- 8.7 Conclusion -- References -- 9 Biosurfactants Production and Their Commercial Importance -- Abbreviations -- 9.1 Introduction -- 9.2 Chemical Surfactant Compounds -- 9.3 Properties of Biosurfactant Compound -- 9.4 Production of Biosurfactant by Microbial Fermentation -- 9.5 Advantages, Microorganisms Involved, and Applications of Biosurfactants -- 9.6 Conclusions -- References -- Part 2 MICROBES IN SUSTAINABLE AGRICULTURE AND BIOTECHNOLOGICAL APPLICATIONS -- 10 Functional Soil Microbes: An Approach Toward Sustainable Horticulture -- 10.1 Introduction -- 10.2 Rhizosphere Microbial Diversity -- 10.3 Plant Growth-Promoting Rhizobacteria -- 10.4 Conclusion and Future Perspectives -- References. 11 Rhizosphere Microbiome: The Next-Generation Crop Improvement Strategy -- 11.1 Introduction -- 11.2 Rhizosphere Engineering -- 11.3 Omics Tools to Study Rhizosphere Metagenome -- 11.4 As Next-Generation Crop Improvement Strategy -- 11.5 Conclusion -- References -- 12 Methane Emission and Strategies for Mitigation in Livestock -- 12.1 Introduction -- 12.2 Contribution of Methane from Livestock -- 12.3 Methanogens -- 12.4 Methanogenesis: Methane Production -- 12.5 Strategies for Mitigation of Methane Emission -- 12.6 Conclusion -- References -- 13 Liquid Biofertilizers and Their Applications: An Overview -- 13.1 Introduction -- 13.2 Biofertilizers "Boon for Mankind" -- 13.3 Carrier-Based Biofertilizers -- 13.4 Sterilization of the Carrier -- 13.5 Merits of Using Liquid Biofertilizer Over Solid Carrier-Based Biofertilizer -- 13.6 Types of Liquid Biofertilizer -- 13.7 Production of Liquid Biofertilizers -- 13.8 Applications of Biofertilizers -- 13.9 Conclusion -- References -- 14 Extremozymes: Biocatalysts From Extremophilic Microorganisms and Their Relevance in Current Biotechnology -- 14.1 Introduction -- 14.2 Extremophiles: The Source of Novel Enzymes -- 14.3 The Potential Application of Extremozymes in Biotechnology -- 14.4 Conclusion and Future Perspectives -- References -- 15 Microbial Chitinases and Their Applications: An Overview -- 15.1 Introduction -- 15.2 Chitinases and Its Types -- 15.3 Sources of Microbial Chitinase -- 15.4 Genetics of Microbial Chitinase -- 15.5 Biotechnological Advances in Microbial Chitinase Production -- 15.6 Applications of Microbial Chitinases -- 15.7 Conclusion -- References -- 16 Lithobiontic Ecology: Stone Encrusting Microbes and their Environment -- 16.1 Introduction -- 16.2 Diversity of Lithobionts and Its Ecological Niche -- 16.3 Colonization Strategies of Lithobionts -- 16.4 Geography of Lithobbiontic Coatings. 16.5 Impacts of Lithobiontic Coatings -- 16.6 Role of Lithobionts in Harsh Environments -- 16.7 Conclusion -- References -- 17 Microbial Intervention in Sustainable Production of Biofuels and Other Bioenergy Products -- 17.1 Introduction -- 17.2 Biomass -- 17.3 Biofuel -- 17.4 Other Bioenergy Products -- 17.5 Conclusion -- References -- 18 Role of Microbes and Microbial Consortium in Solid Waste Management -- 18.1 Introduction -- 18.2 Types of Solid Waste -- 18.3 Waste Management in India -- 18.4 Solid Waste Management -- 18.5 Solid Waste Management Techniques -- 18.6 Conclusion -- References -- Index -- End User License Agreement. |
Record Nr. | UNINA-9910555179303321 |
Hoboken, New Jersey : , : John Wiley & Sons, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environmental and agricultural microbiology : applications for sustainability / / edited by Bibhuti Bhusan Mishra [and three others] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2021] |
Descrizione fisica | 1 online resource (393 pages) |
Disciplina | 579 |
Soggetto topico |
Sustainable agriculture
Microbial ecology Agricultural microbiology |
ISBN |
1-119-52672-8
1-119-52589-6 1-119-52674-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Table of Contents -- Title page -- Copyright -- Preface -- Part 1 MICROBIAL BIOREMEDIATION AND BIOPOLYMER TECHNOLOGY -- 1 A Recent Perspective on Bioremediation of Agrochemicals by Microalgae: Aspects and Strategies -- 1.1 Introduction -- 1.2 Pollution Due to Pesticides -- 1.3 Microalgal Species Involved in Bioremediation of Pesticides -- 1.4 Strategies for Phycoremediation of Pesticides -- 1.5 Molecular Aspects of Pesticide Biodegradation by Microalgae -- 1.6 Factor Affecting Phycoremediation of Pesticides -- 1.7 Benefit and Shortcomings of Phycoremediation -- 1.8 Conclusion and Future Prospects -- References -- 2 Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review -- 2.1 Introduction -- 2.2 Effects of Hexavalent Chromium Toxicity -- 2.3 Chromium Bioremediation by Microalgae -- 2.4 Mechanism Involved in Hexavalent Chromium Reduction in Microalgae -- 2.5 Conclusion -- References -- 3 Biodetoxification of Heavy Metals Using Biofilm Bacteria -- 3.1 Introduction -- 3.2 Source and Toxicity of Heavy Metal Pollution -- 3.3 Biofilm Bacteria -- 3.4 Interaction of Metal and Biofilm Bacteria -- 3.5 Biodetoxification Mechanisms -- 3.6 Conclusion -- References -- 4 Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects -- 4.1 Introduction -- 4.2 Polyamides -- 4.3 Polylactic Acid -- 4.4 Polyhydroxyalkanoates -- 4.5 Conclusion and Future Development -- References -- 5 A Review on PHAs: The Future Biopolymer -- 5.1 Introduction -- 5.2 Green Plastic: Biodegradable Polymer Used as Plastic -- 5.3 Difference Between Biopolymer and Bioplastic -- 5.4 Polyhydroxyalkanoates -- 5.5 Polyhydroxyalkanoates and Its Applications -- 5.6 Microorganisms Producing PHAs -- 5.7 Advantages -- 5.8 Conclusion and Future Prospective -- References -- 6 Polyhydroxybutyrate as an Eco-Friendly Alternative of Synthetic Plastics.
6.1 Introduction -- 6.2 Bioplastics -- 6.4 Classification of Biodegradable Polymers -- 6.5 PHB-Producing Bacteria -- 6.6 Methods for Detecting PHB Granules -- 6.7 Biochemical Pathway for Synthesis of PHB -- 6.8 Production of PHB -- 6.9 Production of PHB Using Genetically Modified Organisms -- 6.10 Characterization of PHB -- 6.11 Various Biochemical Techniques Used for PHB Characterization -- 6.12 Biodegradation of PHB -- 6.13 Application Spectrum of PHB -- 6.14 Conclusion -- 6.15 Future Perspectives -- Acknowledgements -- References -- 7 Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications -- Abbreviations -- 7.1 Introduction -- 7.2 Conventional Plastics and Its Issues in Utility -- 7.3 Bioplastics -- 7.4 Fermentation for PHAs Production -- 7.5 Downstream Process for PHAs -- 7.6 Conclusions -- References -- 8 Polyhydroxyalkanoates for Sustainable Smart Packaging of Fruits -- 8.1 Introduction -- 8.2 Physiological Changes of Fresh Fruits During Ripening and Minimal Processing -- 8.3 Smart Packaging -- 8.4 Biodegradable Polymers for Fruit Packaging -- 8.5 Legal Aspects of Smart Packaging -- 8.6 Pros and Cons of Smart Packaging Using PHAs -- 8.7 Conclusion -- References -- 9 Biosurfactants Production and Their Commercial Importance -- Abbreviations -- 9.1 Introduction -- 9.2 Chemical Surfactant Compounds -- 9.3 Properties of Biosurfactant Compound -- 9.4 Production of Biosurfactant by Microbial Fermentation -- 9.5 Advantages, Microorganisms Involved, and Applications of Biosurfactants -- 9.6 Conclusions -- References -- Part 2 MICROBES IN SUSTAINABLE AGRICULTURE AND BIOTECHNOLOGICAL APPLICATIONS -- 10 Functional Soil Microbes: An Approach Toward Sustainable Horticulture -- 10.1 Introduction -- 10.2 Rhizosphere Microbial Diversity -- 10.3 Plant Growth-Promoting Rhizobacteria -- 10.4 Conclusion and Future Perspectives -- References. 11 Rhizosphere Microbiome: The Next-Generation Crop Improvement Strategy -- 11.1 Introduction -- 11.2 Rhizosphere Engineering -- 11.3 Omics Tools to Study Rhizosphere Metagenome -- 11.4 As Next-Generation Crop Improvement Strategy -- 11.5 Conclusion -- References -- 12 Methane Emission and Strategies for Mitigation in Livestock -- 12.1 Introduction -- 12.2 Contribution of Methane from Livestock -- 12.3 Methanogens -- 12.4 Methanogenesis: Methane Production -- 12.5 Strategies for Mitigation of Methane Emission -- 12.6 Conclusion -- References -- 13 Liquid Biofertilizers and Their Applications: An Overview -- 13.1 Introduction -- 13.2 Biofertilizers "Boon for Mankind" -- 13.3 Carrier-Based Biofertilizers -- 13.4 Sterilization of the Carrier -- 13.5 Merits of Using Liquid Biofertilizer Over Solid Carrier-Based Biofertilizer -- 13.6 Types of Liquid Biofertilizer -- 13.7 Production of Liquid Biofertilizers -- 13.8 Applications of Biofertilizers -- 13.9 Conclusion -- References -- 14 Extremozymes: Biocatalysts From Extremophilic Microorganisms and Their Relevance in Current Biotechnology -- 14.1 Introduction -- 14.2 Extremophiles: The Source of Novel Enzymes -- 14.3 The Potential Application of Extremozymes in Biotechnology -- 14.4 Conclusion and Future Perspectives -- References -- 15 Microbial Chitinases and Their Applications: An Overview -- 15.1 Introduction -- 15.2 Chitinases and Its Types -- 15.3 Sources of Microbial Chitinase -- 15.4 Genetics of Microbial Chitinase -- 15.5 Biotechnological Advances in Microbial Chitinase Production -- 15.6 Applications of Microbial Chitinases -- 15.7 Conclusion -- References -- 16 Lithobiontic Ecology: Stone Encrusting Microbes and their Environment -- 16.1 Introduction -- 16.2 Diversity of Lithobionts and Its Ecological Niche -- 16.3 Colonization Strategies of Lithobionts -- 16.4 Geography of Lithobbiontic Coatings. 16.5 Impacts of Lithobiontic Coatings -- 16.6 Role of Lithobionts in Harsh Environments -- 16.7 Conclusion -- References -- 17 Microbial Intervention in Sustainable Production of Biofuels and Other Bioenergy Products -- 17.1 Introduction -- 17.2 Biomass -- 17.3 Biofuel -- 17.4 Other Bioenergy Products -- 17.5 Conclusion -- References -- 18 Role of Microbes and Microbial Consortium in Solid Waste Management -- 18.1 Introduction -- 18.2 Types of Solid Waste -- 18.3 Waste Management in India -- 18.4 Solid Waste Management -- 18.5 Solid Waste Management Techniques -- 18.6 Conclusion -- References -- Index -- End User License Agreement. |
Record Nr. | UNINA-9910677397803321 |
Hoboken, New Jersey : , : John Wiley & Sons, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|