top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Autore Mishnaevsky L (Leon)
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Descrizione fisica 1 online resource (300 p.)
Disciplina 620.11
Soggetto topico Composite materials - Mechanical properties - Mathematical models
Micromechanics - Mathematical models
Numerical analysis
Soggetto genere / forma Electronic books.
ISBN 1-281-03201-8
9786611032012
0-470-51317-9
0-470-51318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computational Mesomechanics of Composites; Contents; About the Author; Preface; Acknowledgements; 1 Composites; 1.1 Classification and types of composites; 1.2 Deformation, damage and fracture of composites: micromechanisms and roles of phases; 1.2.1 Particle and short fiber reinforced composites; 1.2.2 Long fiber reinforced composites; 1.2.3 Laminates; References; 2 Mesoscale level in the mechanics of materials; 2.1 On the definitions of scale levels: micro- and mesomechanics; 2.2 Size effects; 2.2.1 Brittle and quasi-brittle materials; 2.2.2 Metals; 2.2.3 Thin films; 2.3 Biocomposites
2.3.1 Nacre2.3.2 Sponge spicules; 2.3.3 Bamboo; 2.3.4 Teeth; 2.3.5 Bones; 2.4 On some concepts of the improvement of material properties; 2.4.1 Gradient composite materials; 2.4.2 The application of coatings; 2.4.3 Layered metal matrix composites; 2.4.4 Surface composites; 2.4.5 Agglomerates of small scale inclusions and the 'double dispersion' microstructures of steels; 2.4.6 Inclusion networks; 2.4.7 Interpenetrating phase composites (IPCs); 2.4.8 Hyperorganized structure control; 2.4.9 Summary; 2.5 Physical mesomechanics of materials
2.6 Topological and statistical description of microstructures of compositesReferences; 3 Damage and failure of materials: concepts and methods of modeling; 3.1 Fracture mechanics: basic concepts; 3.1.1 Griffith theory of brittle fracture; 3.1.2 Stress field in the vicinity of a crack; 3.1.3 Stress intensity factor and energy release rate; 3.1.4 J-integral and other models of plastic effects; 3.2 Statistical theories of strength; 3.2.1 Worst flaw and weakest link theories; 3.2.2 Random processes and stochastic equations; 3.2.3 Fiber bundle models and chains of fiber bundles
3.3 Damage mechanics3.3.1 Models of elastic solids with many cracks; 3.3.2 Phenomenological analysis of damage evolution (continuum damage mechanics); 3.3.3 Micromechanical models of void growth in ductile materials; 3.3.4 Thermodynamic damage models; 3.3.5 Nonlocal and gradient enhanced damage models; 3.4 Numerical modeling of damage and fracture; References; 4 Microstructure-strength relationships of composites: concepts and methods of analysis; 4.1 Interaction between elements of microstructures: physical and mechanical models
4.1.1 Theories of constrained plastic flow of ductile materials reinforced by hard inclusions4.1.2 Shear lag model and its applications; 4.2 Multiscale modeling of materials and homogenization; 4.2.1 Multiscale modeling; 4.2.2 Homogenization; 4.3 Analytical estimations and bounds of overall elastic properties of composites; 4.3.1 Rule-of-mixture and classical Voigt and Reuss approximations; 4.3.2 Hashin-Shtrikman bounds; 4.3.3 Dilute distribution model; 4.3.4 Effective field method and Mori-Tanaka model; 4.3.5 Composite sphere and composite cylinder assemblage
4.3.6 Self-consistent models and other effective medium methods
Record Nr. UNINA-9910144703203321
Mishnaevsky L (Leon)  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Autore Mishnaevsky L (Leon)
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Descrizione fisica 1 online resource (300 p.)
Disciplina 620.11
Soggetto topico Composite materials - Mechanical properties - Mathematical models
Micromechanics - Mathematical models
Numerical analysis
ISBN 1-281-03201-8
9786611032012
0-470-51317-9
0-470-51318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computational Mesomechanics of Composites; Contents; About the Author; Preface; Acknowledgements; 1 Composites; 1.1 Classification and types of composites; 1.2 Deformation, damage and fracture of composites: micromechanisms and roles of phases; 1.2.1 Particle and short fiber reinforced composites; 1.2.2 Long fiber reinforced composites; 1.2.3 Laminates; References; 2 Mesoscale level in the mechanics of materials; 2.1 On the definitions of scale levels: micro- and mesomechanics; 2.2 Size effects; 2.2.1 Brittle and quasi-brittle materials; 2.2.2 Metals; 2.2.3 Thin films; 2.3 Biocomposites
2.3.1 Nacre2.3.2 Sponge spicules; 2.3.3 Bamboo; 2.3.4 Teeth; 2.3.5 Bones; 2.4 On some concepts of the improvement of material properties; 2.4.1 Gradient composite materials; 2.4.2 The application of coatings; 2.4.3 Layered metal matrix composites; 2.4.4 Surface composites; 2.4.5 Agglomerates of small scale inclusions and the 'double dispersion' microstructures of steels; 2.4.6 Inclusion networks; 2.4.7 Interpenetrating phase composites (IPCs); 2.4.8 Hyperorganized structure control; 2.4.9 Summary; 2.5 Physical mesomechanics of materials
2.6 Topological and statistical description of microstructures of compositesReferences; 3 Damage and failure of materials: concepts and methods of modeling; 3.1 Fracture mechanics: basic concepts; 3.1.1 Griffith theory of brittle fracture; 3.1.2 Stress field in the vicinity of a crack; 3.1.3 Stress intensity factor and energy release rate; 3.1.4 J-integral and other models of plastic effects; 3.2 Statistical theories of strength; 3.2.1 Worst flaw and weakest link theories; 3.2.2 Random processes and stochastic equations; 3.2.3 Fiber bundle models and chains of fiber bundles
3.3 Damage mechanics3.3.1 Models of elastic solids with many cracks; 3.3.2 Phenomenological analysis of damage evolution (continuum damage mechanics); 3.3.3 Micromechanical models of void growth in ductile materials; 3.3.4 Thermodynamic damage models; 3.3.5 Nonlocal and gradient enhanced damage models; 3.4 Numerical modeling of damage and fracture; References; 4 Microstructure-strength relationships of composites: concepts and methods of analysis; 4.1 Interaction between elements of microstructures: physical and mechanical models
4.1.1 Theories of constrained plastic flow of ductile materials reinforced by hard inclusions4.1.2 Shear lag model and its applications; 4.2 Multiscale modeling of materials and homogenization; 4.2.1 Multiscale modeling; 4.2.2 Homogenization; 4.3 Analytical estimations and bounds of overall elastic properties of composites; 4.3.1 Rule-of-mixture and classical Voigt and Reuss approximations; 4.3.2 Hashin-Shtrikman bounds; 4.3.3 Dilute distribution model; 4.3.4 Effective field method and Mori-Tanaka model; 4.3.5 Composite sphere and composite cylinder assemblage
4.3.6 Self-consistent models and other effective medium methods
Record Nr. UNINA-9910830859703321
Mishnaevsky L (Leon)  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Computational mesomechanics of composites [[electronic resource] ] : numerical analysis of the effect of microstructures of composites on their strength and damage resistance / / Leon Mishnaevsky, Jr
Autore Mishnaevsky L (Leon)
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Descrizione fisica 1 online resource (300 p.)
Disciplina 620.11
Soggetto topico Composite materials - Mechanical properties - Mathematical models
Micromechanics - Mathematical models
Numerical analysis
ISBN 1-281-03201-8
9786611032012
0-470-51317-9
0-470-51318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computational Mesomechanics of Composites; Contents; About the Author; Preface; Acknowledgements; 1 Composites; 1.1 Classification and types of composites; 1.2 Deformation, damage and fracture of composites: micromechanisms and roles of phases; 1.2.1 Particle and short fiber reinforced composites; 1.2.2 Long fiber reinforced composites; 1.2.3 Laminates; References; 2 Mesoscale level in the mechanics of materials; 2.1 On the definitions of scale levels: micro- and mesomechanics; 2.2 Size effects; 2.2.1 Brittle and quasi-brittle materials; 2.2.2 Metals; 2.2.3 Thin films; 2.3 Biocomposites
2.3.1 Nacre2.3.2 Sponge spicules; 2.3.3 Bamboo; 2.3.4 Teeth; 2.3.5 Bones; 2.4 On some concepts of the improvement of material properties; 2.4.1 Gradient composite materials; 2.4.2 The application of coatings; 2.4.3 Layered metal matrix composites; 2.4.4 Surface composites; 2.4.5 Agglomerates of small scale inclusions and the 'double dispersion' microstructures of steels; 2.4.6 Inclusion networks; 2.4.7 Interpenetrating phase composites (IPCs); 2.4.8 Hyperorganized structure control; 2.4.9 Summary; 2.5 Physical mesomechanics of materials
2.6 Topological and statistical description of microstructures of compositesReferences; 3 Damage and failure of materials: concepts and methods of modeling; 3.1 Fracture mechanics: basic concepts; 3.1.1 Griffith theory of brittle fracture; 3.1.2 Stress field in the vicinity of a crack; 3.1.3 Stress intensity factor and energy release rate; 3.1.4 J-integral and other models of plastic effects; 3.2 Statistical theories of strength; 3.2.1 Worst flaw and weakest link theories; 3.2.2 Random processes and stochastic equations; 3.2.3 Fiber bundle models and chains of fiber bundles
3.3 Damage mechanics3.3.1 Models of elastic solids with many cracks; 3.3.2 Phenomenological analysis of damage evolution (continuum damage mechanics); 3.3.3 Micromechanical models of void growth in ductile materials; 3.3.4 Thermodynamic damage models; 3.3.5 Nonlocal and gradient enhanced damage models; 3.4 Numerical modeling of damage and fracture; References; 4 Microstructure-strength relationships of composites: concepts and methods of analysis; 4.1 Interaction between elements of microstructures: physical and mechanical models
4.1.1 Theories of constrained plastic flow of ductile materials reinforced by hard inclusions4.1.2 Shear lag model and its applications; 4.2 Multiscale modeling of materials and homogenization; 4.2.1 Multiscale modeling; 4.2.2 Homogenization; 4.3 Analytical estimations and bounds of overall elastic properties of composites; 4.3.1 Rule-of-mixture and classical Voigt and Reuss approximations; 4.3.2 Hashin-Shtrikman bounds; 4.3.3 Dilute distribution model; 4.3.4 Effective field method and Mori-Tanaka model; 4.3.5 Composite sphere and composite cylinder assemblage
4.3.6 Self-consistent models and other effective medium methods
Record Nr. UNINA-9910841202703321
Mishnaevsky L (Leon)  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons Ltd., c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui