Geometric Aspects of Functional Analysis [[electronic resource] ] : Israel Seminar 1996-2000 / / edited by V.D. Milman, G. Schechtman
| Geometric Aspects of Functional Analysis [[electronic resource] ] : Israel Seminar 1996-2000 / / edited by V.D. Milman, G. Schechtman |
| Edizione | [1st ed. 2000.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000 |
| Descrizione fisica | 1 online resource (X, 298 p.) |
| Disciplina |
510 s
515/.732 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Functional analysis
Convex geometry Discrete geometry Probabilities Functional Analysis Convex and Discrete Geometry Probability Theory and Stochastic Processes |
| ISBN | 3-540-45392-X |
| Classificazione | 46-06 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The transportation cost for the cube -- The uniform concentration of measure phenomenon in ? p n (1 ? p ? 2) -- An editorial comment on the preceding paper -- A remark on the slicing problem -- Remarks on the growth of L p -norms of polynomials -- Positive lyapounov exponents for most energies -- Anderson localization for the band model -- Convex bodies with minimal mean width -- Euclidean projections of a p-convex body -- Remarks on minkowski symmetrizations -- Average volume of sections of star bodies -- Between sobolev and poincaré -- Random aspects of high-dimensional convex bodies -- A geometric lemma and duality of entropy numbers -- Stabilized asymptotic structures and envelopes in banach spaces -- On the isotropic constant of Non-symmetric convex bodies -- Concentration on the ? p n ball -- Shannon’s entropy power inequality via restricted minkowski sums -- Notes on an inequality by pisier for functions on the discrete cube -- More on embedding subspaces of L p into ? p N , 0 p < 1 -- Seminar talks. |
| Record Nr. | UNISA-996466524803316 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Geometric Aspects of Functional Analysis : Israel Seminar 1996-2000 / / edited by V.D. Milman, G. Schechtman
| Geometric Aspects of Functional Analysis : Israel Seminar 1996-2000 / / edited by V.D. Milman, G. Schechtman |
| Edizione | [1st ed. 2000.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000 |
| Descrizione fisica | 1 online resource (X, 298 p.) |
| Disciplina |
510 s
515/.732 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Functional analysis
Convex geometry Discrete geometry Probabilities Functional Analysis Convex and Discrete Geometry Probability Theory |
| ISBN | 3-540-45392-X |
| Classificazione | 46-06 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The transportation cost for the cube -- The uniform concentration of measure phenomenon in ? p n (1 ? p ? 2) -- An editorial comment on the preceding paper -- A remark on the slicing problem -- Remarks on the growth of L p -norms of polynomials -- Positive lyapounov exponents for most energies -- Anderson localization for the band model -- Convex bodies with minimal mean width -- Euclidean projections of a p-convex body -- Remarks on minkowski symmetrizations -- Average volume of sections of star bodies -- Between sobolev and poincaré -- Random aspects of high-dimensional convex bodies -- A geometric lemma and duality of entropy numbers -- Stabilized asymptotic structures and envelopes in banach spaces -- On the isotropic constant of Non-symmetric convex bodies -- Concentration on the ? p n ball -- Shannon’s entropy power inequality via restricted minkowski sums -- Notes on an inequality by pisier for functions on the discrete cube -- More on embedding subspaces of L p into ? p N , 0 p < 1 -- Seminar talks. |
| Record Nr. | UNINA-9910146318803321 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||