top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Intelligent Data Analysis XXII : 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I / / edited by Ioanna Miliou, Nico Piatkowski, Panagiotis Papapetrou
Advances in Intelligent Data Analysis XXII : 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I / / edited by Ioanna Miliou, Nico Piatkowski, Panagiotis Papapetrou
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (XVI, 268 p. 74 illus., 61 illus. in color.)
Disciplina 005.7
Collana Lecture Notes in Computer Science
Soggetto topico Database management
Education - Data processing
Image processing - Digital techniques
Computer vision
Artificial intelligence
Machine learning
Natural language processing (Computer science)
Database Management System
Computers and Education
Computer Imaging, Vision, Pattern Recognition and Graphics
Artificial Intelligence
Machine Learning
Natural Language Processing (NLP)
Reconeixement de formes (Informàtica)
Estadística matemàtica
Processament de dades
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031585470
303158547X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Foundations of AI and ML -- Tackling the Abstraction and Reasoning Corpus (ARC) with Object-Centric Models and the MDL Principle -- 1 Introduction -- 2 Related Work -- 3 Object-Centric Models -- 3.1 Mixing Patterns and Functions -- 3.2 Parsing and Generating Grids with a Grid Model -- 3.3 Predict and Describe Grids with Task Models -- 4 MDL-Based Model Learning -- 4.1 Description Lengths -- 4.2 Search Space and Strategy -- 4.3 Pruning Phase -- 5 Evaluation -- 6 Conclusion -- References -- RMI-RRG: A Soft Protocol to Postulate Monotonicity Constraints for Tabular Datasets -- 1 Introduction -- 2 Related Work -- 3 Preliminaries and Notation -- 3.1 Rank Mutual Information -- 3.2 Relabeling -- 4 Main Direct Competitors -- 4.1 Subjective Approaches -- 4.2 Objective Approaches -- 5 RMI Tables and Required Relabelings Graphs -- 6 The RMI-RRG Protocol -- 7 Experimental Results -- 7.1 Breast Cancer -- 7.2 Car -- 7.3 CMC -- 7.4 Pasture -- 7.5 PIMA -- 7.6 Windsor -- 8 Conclusions -- References -- A Structural-Clustering Based Active Learning for Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Node Classification on Attributed Graphs -- 3.2 Graph Neural Networks (GNNs) -- 3.3 Active Learning Task for Graph Neural Networks -- 4 Proposed Method -- 4.1 Community Detection Using the SCAN Algorithm -- 4.2 Node Selection Based on PageRank -- 4.3 SPA Algorithm -- 5 Experiments -- 5.1 Experiment Settings -- 5.2 Dataset -- 5.3 Evaluation Metrics -- 5.4 Baselines Methods -- 6 Results -- 6.1 Experiment Results of SPA on GCN -- 6.2 Experiment Result of SPA on GraphSAGE -- 6.3 Complexity Analysis -- 7 Discussion and Conclusion -- References -- Multi-armed Bandits with Generalized Temporally-Partitioned Rewards -- 1 Introduction.
2 Background and Related Work -- 3 Problem Formulation -- 4 Lower Bound on Regret -- 5 Proposed Algorithm and Regret Upper Bound -- 5.1 Proposed Algorithm: TP-UCB-FR-G -- 5.2 Regret Upper Bound of TP-UCB-FR-G -- 6 Experimental Results -- 6.1 Setting 1: Synthetic Environment -- 6.2 Setting 2: Spotify Playlists -- 7 Concluding Remarks and Future Work -- References -- GloNets: Globally Connected Neural Networks -- 1 Introduction -- 2 Notation and Model Definition -- 3 Related Work -- 4 Implementing GloNet -- 5 Experiments -- 6 Conclusions and Future Works -- References -- Mind the Data, Measuring the Performance Gap Between Tree Ensembles and Deep Learning on Tabular Data -- 1 Introduction -- 2 Preliminaries -- 2.1 Tabular Data -- 2.2 Tree Ensembles -- 2.3 Deep Learning -- 3 Related Work -- 4 Methodology and Design of Experiments -- 5 Results -- 5.1 Impact of Training Dataset Size -- 5.2 Feature Complexity -- 5.3 Explainability -- 6 Conclusions and Future Work -- References -- A Remark on Concept Drift for Dependent Data -- 1 Introduction -- 2 Problem Setup -- 2.1 A Probability Theoretical Framework for Concept Drift -- 2.2 Stochastic Processes -- 2.3 A Taxonomy of Change Detection in Data Streams -- 3 Consistency Property -- 3.1 Drift is not Non-Stationarity -- 3.2 Temporal Consistency -- 3.3 Measuring Consistency of a Noisy Stochastic Processes -- 4 Numerical Evaluation -- 4.1 Testing Stationarity -- 4.2 Evaluation of Method -- 5 Conclusion -- References -- Representation Learning -- Variational Perspective on Fair Edge Prediction -- 1 Introduction -- 2 Related Work -- 3 Variational Fairness-Aware Node Embedding -- 3.1 Problem Set-Up -- 3.2 Definition of the Loss -- 3.3 Optimization of LEAVE -- 4 Experiments and Results -- 4.1 Edge Prediction Protocol -- 4.2 Evaluation Metrics -- 4.3 Baselines for Edge Prediction -- 4.4 Analysis of Results.
5 Conclusion -- References -- Node Classification in Random Trees -- 1 Introduction -- 2 Related Work -- 2.1 Learning Probabilistic Graphical Models -- 2.2 Node Classification Using Graph Neural Networks -- 3 Method -- 3.1 Problem Formulation -- 3.2 Approach -- 3.3 GNN Design -- 3.4 Classifying Nodes -- 4 Evaluation -- 4.1 Dataset -- 4.2 Experiments -- 4.3 Results -- 5 Conclusion -- References -- Self-supervised Siamese Autoencoders -- 1 Introduction -- 2 Self-supervised Representation Learning -- 3 A Siamese Denoising Autoencoder -- 3.1 Motivation -- 3.2 Architecture -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Related Work -- 6 Conclusion -- References -- Equivariant Parameter Sharing for Porous Crystalline Materials -- 1 Introduction -- 2 Related Work -- 3 Crystal Symmetries -- 4 Methods -- 5 Experiments -- 6 Discussion -- References -- Subgraph Mining for Graph Neural Networks -- 1 Introduction -- 2 Preliminaries -- 3 AutoGSN -- 3.1 Subgraph Mining -- 3.2 Selection -- 3.3 Counting -- 4 Experiments -- 5 Related Work -- 6 Conclusion -- References -- Applications -- Super-Resolution Analysis for Landfill Waste Classification -- 1 Introduction -- 2 Related Work -- 2.1 Image Classification for Landfills Discovery -- 2.2 Image Quality Improvement -- 3 Methodology -- 3.1 Experimental Setup -- 3.2 Results -- 4 Conclusions -- References -- Predicting Performance Drift in AI Models of Healthcare Without Ground Truth Labels -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Probabilistic Sources of Drift -- 3.2 Drift Detection Framework -- 4 Results -- 4.1 Simulated Data -- 4.2 UK Primary Care Covid-19 Data -- 5 Conclusions -- References -- An Interpretable Human-in-the-Loop Process to Improve Medical Image Classification -- 1 Introduction -- 2 Methodology -- 2.1 Dataset Description -- 2.2 Baseline Classifier Description.
2.3 Concept-Based Interpretability -- 2.4 Concept Selection -- 2.5 Human-in-the-Loop Approach -- 3 Results and Discussion -- 3.1 Baseline Classifiers -- 3.2 Concept-Based Interpretability Results -- 3.3 Human-in-the-Loop Approach Results -- 4 Conclusion -- References -- Hybrid Ensemble-Based Travel Mode Prediction -- 1 Introduction -- 2 Related Works -- 3 Ensemble of Batch and Online Learners -- 3.1 Training of Online and Batch Learners with TMC Data Streams -- 3.2 Building an Ensemble of Batch and Online Learners -- 4 Results -- 4.1 Data Streams and Libraries -- 4.2 Experiments -- 4.3 Discussion -- 5 Conclusions -- References -- Natural Language Processing -- Beyond Words: A Comparative Analysis of LLM Embeddings for Effective Clustering -- 1 Introduction -- 2 Related Work -- 3 Models and Algorithms -- 3.1 Clustering Algorithms -- 4 Numerical Experiments -- 4.1 Evaluation Metrics -- 4.2 Experimental Settings -- 4.3 Results and Discussion -- 5 Conclusion and Perspectives -- References -- Data Quality in NLP: Metrics and a Comprehensive Taxonomy -- 1 Introduction -- 1.1 Data Quality -- 2 Related Work -- 3 Taxonomy for Data Quality in NLP -- 3.1 Linguistic -- 3.2 Semantic -- 3.3 Anomaly -- 3.4 Classifier Performance -- 3.5 Diversity -- 4 Experimental Setup -- 5 Results and Discussion -- 6 Conclusion and Future Works -- References -- Building Brownian Bridges to Learn Dynamic Author Representations from Texts -- 1 Introduction -- 2 Related Works -- 3 BARL: Brownian Bridges for Author Representation Learning -- 3.1 Background -- 3.2 Using the Brownian Bridges -- 3.3 Variational Information Bottleneck -- 3.4 Learning Author Representations -- 3.5 Model Architecture of BARL -- 4 Experiments with BARL -- 4.1 Datasets -- 4.2 Parameter Settings and Competitors -- 4.3 Results in Authorship Attribution -- 4.4 Results in Document Dating.
4.5 Results in Author Classification -- 4.6 Ablation Study -- 4.7 Qualitative Analysis -- 5 Conclusion -- References -- Automatically Detecting Political Viewpoints in Norwegian Text -- 1 Introduction -- 2 Related Work -- 2.1 Political Text Analysis -- 2.2 Domain- and Language-Specific LLMs -- 2.3 Masking Techniques -- 3 The nor-pvi Dataset -- 4 Encoder-Decoder Models -- 4.1 Training Datasets -- 4.2 Setup and Training -- 5 Experiments and Evaluations -- 6 Results and Discussions -- 7 Conclusion and Future Work -- References -- AHAM: Adapt, Help, Ask, Model Harvesting LLMs for Literature Mining -- 1 Introduction -- 2 Related Work -- 3 Experimental Data: Literature-Based Discovery Publications -- 4 Methodology -- 4.1 Domain-Adaptation via Sentence-Transformers and BERTopic -- 4.2 Prompt Engineering of LLMs to Design Topic Names -- 4.3 Assessing Adaptation Through Evaluation of Topic Naming -- 4.4 AHAM Heuristic -- 5 Quantitative Exploration of the AHAM Objective -- 6 Qualitative Evaluation -- 7 Conclusion and Further Work -- References -- Author Index.
Record Nr. UNINA-9910847588803321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Intelligent Data Analysis XXIII : 23rd International Symposium on Intelligent Data Analysis, IDA 2025, Konstanz, Germany, May 7–9, 2025, Proceedings / / edited by Georg Krempl, Kai Puolamäki, Ioanna Miliou
Advances in Intelligent Data Analysis XXIII : 23rd International Symposium on Intelligent Data Analysis, IDA 2025, Konstanz, Germany, May 7–9, 2025, Proceedings / / edited by Georg Krempl, Kai Puolamäki, Ioanna Miliou
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVI, 486 p. 117 illus., 111 illus. in color.)
Disciplina 005.7
Collana Lecture Notes in Computer Science
Soggetto topico Database management
Education - Data processing
Image processing - Digital techniques
Computer vision
Artificial intelligence
Machine learning
Natural language processing (Computer science)
Database Management System
Computers and Education
Computer Imaging, Vision, Pattern Recognition and Graphics
Artificial Intelligence
Machine Learning
Natural Language Processing (NLP)
ISBN 3-031-91398-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applications of Data Science -- Credal Knowledge Tracing for Imprecise and Uncertain MCQ -- Development of Models to Quantify Training Load in Outdoor Running using Inertial Sensors -- Estimating the Learning Capacity of Bacterial Metabolic Networks -- Semi-supervised learning with pairwise instance comparisons for medical instance classification -- Local-global Data Augmentation for Contrastive Learning in Static Sign Language Recognition -- SiamCircle: Trajectory Representation Learning in Free Settings -- Synthetic Tabular Data Detection In the Wild -- Assessing the Impact of Graph Structure Learning in Graph Deviation Networks -- Foundations of Data Science -- The When and How of Target Variable Transformations -- Balancing performance and scalability of demand forecasting ML models -- Balancing global importance and source proximity for personalized recommendations using random walk length -- Counterintuitive Behavior of Clustering Quality: Findings for K-Means on Synthetic and Real Data -- BOWSA: a contribution of sensitivity analysis to improve Bayesian optimization for parameter tuning -- Overfitting in Combined Algorithm Selection and Hyperparameter Optimization -- Local Subgroup Discovery on Attributed Network Graphs -- Imposing Constraints in Probabilistic Circuits via Gradient Optimization -- Natural Language Processing -- Improving Next Tokens via Second-Last Predictions with ’Generate and Refine’ -- Detection of Large Language Model Contamination with Tabular Data -- Imbalanced Data Clustering via Targeted Data Augmentation Using GMM and LLM -- Make Literature-Based Discovery Great Again through Reproducible Pipelines -- Extracting information in a low-resource setting: case study on bioinformatics workflows -- Vocabulary Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and Languages -- Temporal and Streaming Data Expertise Prediction of Tetris Players Using Eye Tracking Information -- Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks -- Bridging Spatial and Temporal Contexts: Sparse Transfer Learning -- Meta-learning and Data Augmentation for Stress Testing Forecasting Models -- Pragmatic Paradigm for Multi-stream Regression -- Two-in-one Models for Event Prediction and Time Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a Digital Patient under Anesthesia -- An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks -- Performative Drift Resistant Classification using Generative Domain Adversarial Networks -- Explainable and Interpretable Data Science -- Extracting Moore Machines from Transformers using Queries and Counterexamples -- Obtaining Example-Based Explanations from Deep Neural Networks -- Relevance-aware Algorithmic Recourse -- Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines -- A Constrained Declarative Based Approach for Explainable Clustering.
Record Nr. UNINA-9911001468703321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Intelligent Data Analysis XXIII : 23rd International Symposium on Intelligent Data Analysis, IDA 2025, Konstanz, Germany, May 7–9, 2025, Proceedings / / edited by Georg Krempl, Kai Puolamäki, Ioanna Miliou
Advances in Intelligent Data Analysis XXIII : 23rd International Symposium on Intelligent Data Analysis, IDA 2025, Konstanz, Germany, May 7–9, 2025, Proceedings / / edited by Georg Krempl, Kai Puolamäki, Ioanna Miliou
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVI, 486 p. 117 illus., 111 illus. in color.)
Disciplina 005.7
Collana Lecture Notes in Computer Science
Soggetto topico Database management
Education - Data processing
Image processing - Digital techniques
Computer vision
Artificial intelligence
Machine learning
Natural language processing (Computer science)
Database Management System
Computers and Education
Computer Imaging, Vision, Pattern Recognition and Graphics
Artificial Intelligence
Machine Learning
Natural Language Processing (NLP)
ISBN 3-031-91398-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applications of Data Science -- Credal Knowledge Tracing for Imprecise and Uncertain MCQ -- Development of Models to Quantify Training Load in Outdoor Running using Inertial Sensors -- Estimating the Learning Capacity of Bacterial Metabolic Networks -- Semi-supervised learning with pairwise instance comparisons for medical instance classification -- Local-global Data Augmentation for Contrastive Learning in Static Sign Language Recognition -- SiamCircle: Trajectory Representation Learning in Free Settings -- Synthetic Tabular Data Detection In the Wild -- Assessing the Impact of Graph Structure Learning in Graph Deviation Networks -- Foundations of Data Science -- The When and How of Target Variable Transformations -- Balancing performance and scalability of demand forecasting ML models -- Balancing global importance and source proximity for personalized recommendations using random walk length -- Counterintuitive Behavior of Clustering Quality: Findings for K-Means on Synthetic and Real Data -- BOWSA: a contribution of sensitivity analysis to improve Bayesian optimization for parameter tuning -- Overfitting in Combined Algorithm Selection and Hyperparameter Optimization -- Local Subgroup Discovery on Attributed Network Graphs -- Imposing Constraints in Probabilistic Circuits via Gradient Optimization -- Natural Language Processing -- Improving Next Tokens via Second-Last Predictions with ’Generate and Refine’ -- Detection of Large Language Model Contamination with Tabular Data -- Imbalanced Data Clustering via Targeted Data Augmentation Using GMM and LLM -- Make Literature-Based Discovery Great Again through Reproducible Pipelines -- Extracting information in a low-resource setting: case study on bioinformatics workflows -- Vocabulary Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and Languages -- Temporal and Streaming Data Expertise Prediction of Tetris Players Using Eye Tracking Information -- Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks -- Bridging Spatial and Temporal Contexts: Sparse Transfer Learning -- Meta-learning and Data Augmentation for Stress Testing Forecasting Models -- Pragmatic Paradigm for Multi-stream Regression -- Two-in-one Models for Event Prediction and Time Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a Digital Patient under Anesthesia -- An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks -- Performative Drift Resistant Classification using Generative Domain Adversarial Networks -- Explainable and Interpretable Data Science -- Extracting Moore Machines from Transformers using Queries and Counterexamples -- Obtaining Example-Based Explanations from Deep Neural Networks -- Relevance-aware Algorithmic Recourse -- Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines -- A Constrained Declarative Based Approach for Explainable Clustering.
Record Nr. UNISA-996660361603316
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui