top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Applied Deep Learning : Convolutional Neural Networks and Object Detection / / by Umberto Michelucci
Advanced Applied Deep Learning : Convolutional Neural Networks and Object Detection / / by Umberto Michelucci
Autore Michelucci Umberto
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2019
Descrizione fisica 1 online resource (XVIII, 285 p. 88 illus., 28 illus. in color.)
Disciplina 006.3
Soggetto topico Artificial intelligence
Python (Computer program language)
Open source software
Artificial Intelligence
Python
Open Source
ISBN 9781484249765
1484249763
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction and Development Environment Setup -- Chapter 2: TensorFlow: advanced topics -- Chapter 3: Fundamentals of Convolutional Neural Networks -- Chapter 4: Advanced CNNs and Transfer Learning -- Chapter 5: Cost functions and style transfer -- Chapter 6: Object classification - an introduction -- Chapter 7: Object localization - an implementation in Python -- Chapter 8: Histology Tissue Classification.
Record Nr. UNINA-9910349527903321
Michelucci Umberto  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Deep Learning : A Case-Based Approach to Understanding Deep Neural Networks / / by Umberto Michelucci
Applied Deep Learning : A Case-Based Approach to Understanding Deep Neural Networks / / by Umberto Michelucci
Autore Michelucci Umberto
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018
Descrizione fisica 1 online resource (425 pages)
Disciplina 006.31
Soggetto topico Artificial intelligence
Python (Computer program language)
Open source software
Computer programming
Big data
Artificial Intelligence
Python
Open Source
Big Data
ISBN 9781484237908
1484237900
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction -- Chapter 2: Single Neurons -- Chapter 3: Fully connected Neural Network with more neurons -- Chapter 4: Neural networks error analysis -- Chapter 5: Dropout technique -- Chapter 6: Hyper parameters tuning -- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.) -- Chapter 8: Convolutional Networks and image recognition -- Chapter 9: Recurrent Neural Networks -- Chapter 10: A practical COMPLETE example from scratch (put everything together) -- Chapter 11: Logistic regression implement from scratch in Python without libraries. .
Altri titoli varianti Case-based approach to understanding neural networks
Record Nr. UNINA-9910300755003321
Michelucci Umberto  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied deep learning with TensorFlow 2 : learn to implement advanced deep learning techniques with Python / / Umberto Michelucci
Applied deep learning with TensorFlow 2 : learn to implement advanced deep learning techniques with Python / / Umberto Michelucci
Autore Michelucci Umberto
Edizione [2nd ed.]
Pubbl/distr/stampa New York, NY : , : Apress, , [2022]
Descrizione fisica 1 online resource (397 pages)
Disciplina 006.32
Collana ITpro collection
Soggetto topico Python (Computer program language)
Machine learning
Neural networks (Computer science)
ISBN 1-5231-5107-2
1-4842-8020-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- About the Author -- About the Contributing Author -- About the Technical Reviewer -- Acknowledgments -- Foreword -- Introduction -- Chapter 1: Optimization and Neural Networks -- A Basic Understanding of Neural Networks -- The Problem of Learning -- A First Definition of Learning -- [Advanced Section] Assumption in the Formulation -- A Definition of Learning for Neural Networks -- Constrained vs. Unconstrained Optimization -- [Advanced Section] Reducing a Constrained Problem to an Unconstrained Optimization Problem -- Absolute and Local Minima of a Function -- Optimization Algorithms -- Line Search and Trust Region -- Steepest Descent -- The Gradient Descent Algorithm -- Choosing the Right Learning Rate -- Variations of GD -- Mini-Batch GD -- Stochastic GD -- How to Choose the Right Mini-Batch Size -- [Advanced Section] SGD and Fractals -- Exercises -- Conclusion -- Chapter 2: Hands-on with a Single Neuron -- A Short Overview of a Neuron's Structure -- A Short Introduction to Matrix Notation -- An Overview of the Most Common Activation Functions -- Identity Function -- Sigmoid Function -- Tanh (Hyperbolic Tangent) Activation Function -- ReLU (Rectified Linear Unit) Activation Function -- Leaky ReLU -- The Swish Activation Function -- Other Activation Functions -- How to Implement a Neuron in Keras -- Python Implementation Tips: Loops and NumPy -- Linear Regression with a Single Neuron -- The Dataset for the Real-World Example -- Dataset Splitting -- Linear Regression Model -- Keras Implementation -- The Model's Learning Phase -- Model's Performance Evaluation on Unseen Data -- Logistic Regression with a Single Neuron -- The Dataset for the Classification Problem -- Dataset Splitting -- The Logistic Regression Model -- Keras Implementation -- The Model's Learning Phase -- The Model's Performance Evaluation.
Conclusion -- Exercises -- References -- Chapter 3: Feed-Forward Neural Networks -- A Short Review of Network's Architecture and Matrix Notation -- Output of Neurons -- A Short Summary of Matrix Dimensions -- Example: Equations for a Network with Three Layers -- Hyper-Parameters in Fully Connected Networks -- A Short Review of the Softmax Activation Function for Multiclass Classifications -- A Brief Digression: Overfitting -- A Practical Example of Overfitting -- Basic Error Analysis -- Implementing a Feed-Forward Neural Network in Keras -- Multiclass Classification with Feed-Forward Neural Networks -- The Zalando Dataset for the Real-World Example -- Modifying Labels for the Softmax Function: One-Hot Encoding -- The Feed-Forward Network Model -- Keras Implementation -- Gradient Descent Variations Performances -- Comparing the Variations -- Examples of Wrong Predictions -- Weight Initialization -- Adding Many Layers Efficiently -- Advantages of Additional Hidden Layers -- Comparing Different Networks -- Tips for Choosing the Right Network -- Estimating the Memory Requirements of Models -- General Formula for the Memory Footprint -- Exercises -- References -- Chapter 4: Regularization -- Complex Networks and Overfitting -- What Is Regularization -- About Network Complexity -- ℓp Norm -- ℓ2 Regularization -- Theory of ℓ2 Regularization -- Keras Implementation -- ℓ1 Regularization -- Theory of ℓ1 Regularization and Keras Implementation -- Are the Weights Really Going to Zero? -- Dropout -- Early Stopping -- Additional Methods -- Exercises -- References -- Chapter 5: Advanced Optimizers -- Available Optimizers in Keras in TensorFlow 2.5 -- Advanced Optimizers -- Exponentially Weighted Averages -- Momentum -- RMSProp -- Adam -- Comparison of the Optimizers' Performance -- Small Coding Digression -- Which Optimizer Should You Use?.
Chapter 6: Hyper-Parameter Tuning -- Black-Box Optimization -- Notes on Black-Box Functions -- The Problem of Hyper-Parameter Tuning -- Sample Black-Box Problem -- Grid Search -- Random Search -- Coarse to Fine Optimization -- Bayesian Optimization -- Nadaraya-Watson Regression -- Gaussian Process -- Stationary Process -- Prediction with Gaussian Processes -- Acquisition Function -- Upper Confidence Bound (UCB) -- Example -- Sampling on a Logarithmic Scale -- Hyper-Parameter Tuning with the Zalando Dataset -- A Quick Note about the Radial Basis Function -- Exercises -- References -- Chapter 7: Convolutional Neural Networks -- Kernels and Filters -- Convolution -- Examples of Convolution -- Pooling -- Padding -- Building Blocks of a CNN -- Convolutional Layers -- Pooling Layers -- Stacking Layers Together -- An Example of a CNN -- Conclusion -- Exercises -- References -- Chapter 8: A Brief Introduction to Recurrent Neural Networks -- Introduction to RNNs -- Notation -- The Basic Idea of RNNs -- Why the Name Recurrent -- Learning to Count -- Conclusion -- Further Readings -- Chapter 9: Autoencoders -- Introduction -- Regularization in Autoencoders -- Feed-Forward Autoencoders -- Activation Function of the Output Layer -- ReLU -- Sigmoid -- The Loss Function -- Mean Square Error -- Binary Cross-Entropy -- The Reconstruction Error -- Example: Reconstructing Handwritten Digits -- Autoencoder Applications -- Dimensionality Reduction -- Equivalence with PCA -- Classification -- Classification with Latent Features -- The Curse of Dimensionality: A Small Detour -- Anomaly Detection -- Model Stability: A Short Note -- Denoising Autoencoders -- Beyond FFA: Autoencoders with Convolutional Layers -- Implementation in Keras -- Exercises -- Further Readings -- Chapter 10: Metric Analysis -- Human-Level Performance and Bayes Error.
A Short Story About Human-Level Performance -- Human-Level Performance on MNIST -- Bias -- Metric Analysis Diagram -- Training Set Overfitting -- Test Set -- How to Split Your Dataset -- Unbalanced Class Distribution: What Can Happen -- Datasets with Different Distributions -- k-fold Cross Validation -- Manual Metric Analysis: An Example -- Exercises -- References -- Chapter 11: Generative Adversarial Networks (GANs) -- Introduction to GANs -- Training Algorithm for GANs -- A Practical Example with Keras and MNIST -- A Note on Training -- Conditional GANs -- Conclusion -- Appendix A: Introduction to Keras -- Some History -- Understanding the Sequential Model -- Understanding Keras Layers -- Setting the Activation Function -- Using Functional APIs -- Specifying Loss Functions and Metrics -- Putting It All Together and Training -- Modeling evaluate() and predict () -- Using Callback Functions -- Saving and Loading Models -- Saving Your Weights Manually -- Saving the Entire Model -- Conclusion -- Appendix B: Customizing Keras -- Customizing Callback Classes -- Example of a Custom Callback Class -- Custom Training Loops -- Calculating Gradients -- Custom Training Loop for a Neural Network -- Index.
Record Nr. UNINA-9910556881503321
Michelucci Umberto  
New York, NY : , : Apress, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamental Mathematical Concepts for Machine Learning in Science
Fundamental Mathematical Concepts for Machine Learning in Science
Autore Michelucci Umberto
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (259 pages)
ISBN 3-031-56431-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Choice of Topics -- 1.3 Prerequisites -- 1.4 Book Structure -- 1.5 About This Book -- 1.6 Warnings, Info and Examples -- 1.7 Optional and Advanced Material -- 1.8 Further Exploration and Reading -- 1.9 References -- 1.10 Let us Start -- References -- Chapter 2 Machine Learning: History and Terminology -- 2.1 Brief History of Machine Learning -- 2.2 Machine Learning in Science -- 2.3 Types of Machine Learning -- References -- Chapter 3 Calculus and Optimisation for Machine Learning -- 3.1 Motivation -- 3.2 Concept of Limit -- 3.3 Derivative and its Properties -- 3.4 Partial Derivative -- 3.5 Gradient -- 3.6 Extrema of a Function -- 3.7 Optimisation for Machine Learning -- 3.8 Introduction to Optimisation for Neural Networks -- 3.8.1 First Definition of Learning -- 3.8.2 Constrained vs. Unconstrained Optimisation -- 3.9 Optimization Algorithms -- 3.9.1 Line Search and Trust Region Approaches -- 3.9.2 Steepest Descent -- 3.9.3 Additional Directions for the Line Search Approach -- 3.9.4 The Gradient Descent Algorithm -- 3.9.5 Choosing the Right Learning Rate -- 3.9.6 Variations of Gradient Descent -- 3.9.6.1 Mini-batch Gradient Descent -- 3.9.6.2 Stochastic Gradient Descent -- 3.9.7 How to Choose the Right Mini-batch Size -- 3.9.8 Stochastic Gradient Descent and Fractals -- 3.10 Conclusions -- References -- Chapter 4 Linear Algebra -- 4.1 Motivation -- 4.2 Vectors -- 4.2.1 Geometrical Interpretation of Vectors -- 4.2.2 Norm of Vectors -- 4.2.3 Dot Product -- 4.2.4 Cross Product -- 4.3 Matrices -- 4.3.1 Sum, Subtraction and Transpose -- 4.3.2 Multiplication of Matrices and Vectors -- 4.3.3 Inverse and Trace -- 4.3.4 Determinant -- 4.3.5 Matrix Calculus and Linear Regression -- 4.4 Relevance for Machine Learning.
4.5 Eigenvectors and Eigenvalues -- 4.6 Principal Component Analysis -- 4.6.1 Basis of a Vector Space -- 4.6.2 Definition of a Vector Space -- 4.6.3 Linear Transformations (maps) -- 4.6.4 PCA Formalisation -- 4.6.5 Covariance Matrix -- 4.6.6 Overview of Assumptions -- 4.6.7 PCA with Eigenvectors and Eigenvalues -- 4.6.8 One Implementation Limitation -- References -- Chapter 5 Statistics and Probability for Machine Learning -- 5.1 Motivation -- 5.2 Random Experiments and Variables -- 5.3 Algebra of Sets -- 5.4 Probability -- 5.4.1 Relative Frequency Interpretation of Probability -- 5.4.2 Probability as a Set Function -- 5.4.3 Axiomatic Definition of Probability -- 5.4.4 Properties of Probability Functions -- 5.5 The Softmax Function -- 5.5.1 Softmax Range of Applications -- 5.6 Some Theorems about Probability Functions -- 5.7 Conditional Probability -- 5.8 Bayes Theorem -- 5.9 Bayes Error -- 5.10 Naïve Bayes Classifier -- 5.11 Distribution Functions -- 5.11.1 Cumulative Distribution Function (CDF) -- 5.11.2 Probability Density (PDF) and Mass Functions (PMF) -- 5.12 Expected Values and its Properties -- 5.13 Variance and its Properties -- 5.13.1 Properties -- 5.14 Normal Distribution -- 5.15 Other Distributions -- 5.16 The MSE and its Distribution -- 5.16.1 Moment Generating Functions -- 5.16.2 Central Limit Theorem -- 5.17 Central Limit Theorem without Mathematics -- References -- Chapter 6 Sampling Theory (a.k.a. Creating a Dataset Properly) -- 6.1 Introduction -- 6.2 Research Questions and Hypotheses -- 6.2.1 Research Questions -- 6.2.2 Hypothesis -- 6.2.3 Relevance of Hypothesis and Research Questions in Machine Learning -- 6.3 Survey Populations -- 6.4 Survey Samples -- 6.4.1 Non-probability Sampling -- 6.4.2 Probability Sampling -- 6.5 Stratification and Clustering -- 6.6 Random Sampling without Replacement -- 6.7 Random Sampling with Replacement.
6.8 Bootstrapping -- 6.9 Random Stratified Sampling -- 6.10 Sampling in Machine Learning -- References -- Chapter 7 Model Validation and Selection -- 7.1 Introduction -- 7.2 Bias-Variance Tradeoff -- 7.3 Bias-Variance Tradeoff - a Mathematical Discussion -- 7.4 High-Variance Low-Bias regime -- 7.5 Low-Variance High-Bias regime -- 7.6 Overfitting and Underfitting -- 7.7 The Simple Split Approach (a.k.a. Hold-out Approach) -- 7.8 Data Leakage -- 7.8.1 Data Leakage with Correlated Observations -- 7.8.2 Stratified Sampling -- 7.9 Monte Carlo Cross-Validation -- 7.10 Monte-Carlo Cross Validation with Bootstrapping -- 7.11 k-Fold Cross Validation -- 7.12 The Leave-One-Out Approach -- 7.13 Choosing the Cross-Validation Approach -- 7.14 Model Selection -- 7.14.1 Model Selection with Supervised Learning -- 7.14.2 Model Selection with Unsupervised Learning -- 7.15 Qualitative Criteria for Model Selection -- References -- Chapter 8 Unbalanced Datasets and Machine Learning Metrics -- 8.1 Introduction -- 8.2 A Simple Example -- 8.3 Approaches to Deal with Unbalanced Datasets -- 8.3.1 Oversampling -- 8.3.2 (Random) Undersampling -- 8.4 Synthetic Minority Oversampling TEchnique (SMOTE) -- 8.5 Summary of Methods for Dealing with Unbalanced Datasets -- 8.6 Important Metrics -- 8.6.1 The Notion of Metric -- 8.6.1.1 .The MSE is a Metric -- 8.6.1.2 . 1 − is a Metric -- 8.6.2 Confusion Matrix -- 8.6.3 Sensitivity and Specificity -- 8.6.4 Precision -- 8.6.5 -score -- 8.6.6 Balanced Accuracy -- 8.6.7 Receiving Operating Characteristic (ROC) Curve -- 8.6.8 Probability Interpretation of the AUC -- References -- Chapter 9 Hyper-parameter Tuning -- 9.1 Introduction -- 9.2 Black-box Optimisation -- 9.2.1 Notes on Black-box Functions -- 9.3 The Problem of Hyper-parameter Tuning -- 9.4 Sample Black-box Problem -- 9.4.1 Grid Search -- 9.4.2 Random Search.
9.4.3 Coarse to Fine Optimisation -- 9.4.4 Sampling on a Logarithmic Scale -- 9.5 Overview of Approaches for Hyper-parameter Tuning -- References -- Chapter 10 Feature Importance and Selection -- 10.1 Introduction -- 10.2 Feature Importance Taxonomy -- 10.2.1 Filter Methods -- 10.2.2 Wrapper Methods -- 10.2.3 Embedded Methods -- 10.3 Forward Feature Selection -- 10.3.1 Forward Feature Selection Practical Example -- 10.4 Backward Feature Elimination -- 10.5 Permutation Feature Importance -- 10.6 Information Content Elimination -- 10.7 Summary -- 10.8 SHapley Additive exPlanations (SHAP) -- References -- Index.
Record Nr. UNINA-9910861099003321
Michelucci Umberto  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistics for Scientists : A Concise Guide for Data-driven Research / / by Umberto Michelucci
Statistics for Scientists : A Concise Guide for Data-driven Research / / by Umberto Michelucci
Autore Michelucci Umberto
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (0 pages)
Disciplina 519.5
Soggetto topico Mathematical statistics - Data processing
Computer science - Mathematics
Mathematical statistics
Statistics
Statistics and Computing
Probability and Statistics in Computer Science
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
ISBN 9783031781476
9783031781469
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Statistics -- Types of Data -- Data Collection Methods (Sampling Theory) -- Measures of Central Tendency -- Measures of Dispersion -- Measures of Positions -- Outliers -- Introduction to Distributions -- Skewness, Kurtosis and Modality -- Data Visualisation -- Confidence Intervals -- Hypothesis Testing -- Correlation and Linear Regression -- Statistical Project - Steps and Process -- Appendix A - Partioning of the Ordinary Least Square Variance -- Appendix B - Big-O and Little-o Notation.
Record Nr. UNINA-9911016076003321
Michelucci Umberto  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui