top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Pubbl/distr/stampa Beijing, China, : Higher Education Press, 2011
Descrizione fisica 1 online resource (314 p.)
Disciplina 515.353
518.5
Altri autori (Persone) DamlamianAlain
MiaraBernadette
LiDaqian
Collana Series in contemporary applied mathematics
Soggetto topico Homogenization (Differential equations)
Differential equations, Nonlinear
Mathematical analysis
Soggetto genere / forma Electronic books.
ISBN 981-4366-89-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References
Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples
4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2
7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary
4.2 Elementary displacements and decompositions
Record Nr. UNINA-9910457497603321
Beijing, China, : Higher Education Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Pubbl/distr/stampa Beijing, China, : Higher Education Press, 2011
Descrizione fisica 1 online resource (314 p.)
Disciplina 515.353
518.5
Altri autori (Persone) DamlamianAlain
MiaraBernadette
LiDaqian
Collana Series in contemporary applied mathematics
Soggetto topico Homogenization (Differential equations)
Differential equations, Nonlinear
Mathematical analysis
ISBN 981-4366-89-7
Classificazione SK 950
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References
Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples
4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2
7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary
4.2 Elementary displacements and decompositions
Record Nr. UNINA-9910779068003321
Beijing, China, : Higher Education Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale problems : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Multiscale problems : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li
Edizione [1st ed.]
Pubbl/distr/stampa Beijing, China, : Higher Education Press, 2011
Descrizione fisica 1 online resource (314 p.)
Disciplina 515.353
518.5
Altri autori (Persone) DamlamianAlain
MiaraBernadette
LiDaqian
Collana Series in contemporary applied mathematics
Soggetto topico Homogenization (Differential equations)
Differential equations, Nonlinear
Mathematical analysis
ISBN 981-4366-89-7
Classificazione SK 950
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References
Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples
4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2
7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary
4.2 Elementary displacements and decompositions
Record Nr. UNINA-9910816311803321
Beijing, China, : Higher Education Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Pubbl/distr/stampa Singapore, : Hackensack, NJ, : World Scientific, c2007
Descrizione fisica 1 online resource (283 p.)
Disciplina 620.001/1
Altri autori (Persone) MiaraBernadette
StavroulakisG. E (Georgios E.)
ValenteVanda
Soggetto topico Smart materials - Mathematical models
Smart structures - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-12126-6
9786611121266
981-270-687-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd
Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques
Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos
On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index
Record Nr. UNINA-9910450667803321
Singapore, : Hackensack, NJ, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Pubbl/distr/stampa Singapore, : Hackensack, NJ, : World Scientific, c2007
Descrizione fisica 1 online resource (283 p.)
Disciplina 620.001/1
Altri autori (Persone) MiaraBernadette
StavroulakisG. E (Georgios E.)
ValenteVanda
Soggetto topico Smart materials - Mathematical models
Smart structures - Mathematical models
ISBN 1-281-12126-6
9786611121266
981-270-687-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd
Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques
Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos
On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index
Record Nr. UNINA-9910784042203321
Singapore, : Hackensack, NJ, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Topics on mathematics for smart systems : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Topics on mathematics for smart systems : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : Hackensack, NJ, : World Scientific, c2007
Descrizione fisica 1 online resource (283 p.)
Disciplina 620.001/1
Altri autori (Persone) MiaraBernadette
StavroulakisG. E (Georgios E.)
ValenteVanda
Soggetto topico Smart materials - Mathematical models
Smart structures - Mathematical models
ISBN 1-281-12126-6
9786611121266
981-270-687-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd
Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques
Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos
On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index
Altri titoli varianti Mathematics for smart systems
Record Nr. UNINA-9910814897103321
Singapore, : Hackensack, NJ, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui