Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li |
Pubbl/distr/stampa | Beijing, China, : Higher Education Press, 2011 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
515.353
518.5 |
Altri autori (Persone) |
DamlamianAlain
MiaraBernadette LiDaqian |
Collana | Series in contemporary applied mathematics |
Soggetto topico |
Homogenization (Differential equations)
Differential equations, Nonlinear Mathematical analysis |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4366-89-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 4.2 Elementary displacements and decompositions |
Record Nr. | UNINA-9910457497603321 |
Beijing, China, : Higher Education Press, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiscale problems [[electronic resource] ] : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li |
Pubbl/distr/stampa | Beijing, China, : Higher Education Press, 2011 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
515.353
518.5 |
Altri autori (Persone) |
DamlamianAlain
MiaraBernadette LiDaqian |
Collana | Series in contemporary applied mathematics |
Soggetto topico |
Homogenization (Differential equations)
Differential equations, Nonlinear Mathematical analysis |
ISBN | 981-4366-89-7 |
Classificazione | SK 950 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 4.2 Elementary displacements and decompositions |
Record Nr. | UNINA-9910779068003321 |
Beijing, China, : Higher Education Press, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiscale problems : theory, numerical approximation and applications / / editors, Alain Damlamian, Bernadette Miara, Tatsien Li |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Beijing, China, : Higher Education Press, 2011 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
515.353
518.5 |
Altri autori (Persone) |
DamlamianAlain
MiaraBernadette LiDaqian |
Collana | Series in contemporary applied mathematics |
Soggetto topico |
Homogenization (Differential equations)
Differential equations, Nonlinear Mathematical analysis |
ISBN | 981-4366-89-7 |
Classificazione | SK 950 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Alain Damlamian An Introduction to Periodic Homogenization; 1 Introduction; 2 The main ideas of Homogenization; The three steps of Homogenization; 3 The model problem and three theoretical methods; 3.1 The multiple-scale expansion method; 3.2 The oscillating test functions method; 3.2.1 The proof of Theorem 3.4; 3.2.2 Convergence of the energy; 3.3 The two-scale convergence method; References; Alain Damlamian The Periodic Unfolding Method in Homogenization; 1 Introduction; 2 Unfolding in Lp-spaces; 2.1 The unfolding operator T; 2.2 The averaging operator U
2.3 The connection with two-scale convergence2.4 The local average operator M; 3 Unfolding and gradients; 4 Periodic unfolding and the standard homogenization problem; 4.1 The model problem and the standard homogenization result; 4.2 The Unfolding result: the case of strong convergence of the right-hand side; 4.3 Proof of Theorem 4.3; 4.4 The convergence of the energy and its consequences; 4.5 Some corrector results and error estimates; 4.6 The case of weak convergence of the right-hand side; 5 Periodic unfolding and multiscales; 6 Further developments; References Gabriel Nguetseng and Lazarus Signing Deterministic Homogenization of Stationary Navier-Stokes Type Equations1 Introduction; 2 Periodic homogenization of stationary Navier-Stokes type equations; 2.1 Preliminaries; 2.2 A global homogenization theorem; 2.3 Macroscopic homogenized equations; 3 General deterministic homogenization of stationary Navier-Stokes type equations; 3.1 Preliminaries and statement of the homogenization problem; 3.2 A global homogenization theorem; 3.3 Macroscopic homogenized equations; 3.4 Some concrete examples 4 Homogenization of the stationary Navier- Stokes equations in periodic porous media4.1 Preliminaries; 4.2 Homogenization results; References; Patricia Donato Homogenization of a Class of Imperfect Transmission Problems; 1 Introduction; 2 Setting of the problem and main results; 3 Some preliminary results; 4 A priori estimates; 5 A class of suitable test functions; 5.1 The test functions in the reference cell Y; 5.2 The test functions in; 6 Proofs of Theorems 2.1 and 2.2; 6.1 Identification of 1 + 2; 6.2 Identification of 1 and 2 for -1 < < 1; 6.3 Identification of u2 7 Proof of Theorem 2.4 (case > 1)7.1 A priori estimates; 7.2 Identification of 1; 7.3 Identification of 2; References; Georges Griso Decompositions of Displacements of Thin Structures; 1 Introduction; 2 The main theorem; 2.1 Poincar ́e-Wirtinger's inequality in an open bounded set star-shaped with respect to a ball; 2.2 Distances between a displacement and the space of the rigid body displacements; 3 Decomposition of curved rod displacements; 3.1 Notations; 3.2 Elementary displacements and decomposition; 4 Decomposition of shell displacements; 4.1 Notations and preliminary 4.2 Elementary displacements and decompositions |
Record Nr. | UNINA-9910816311803321 |
Beijing, China, : Higher Education Press, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente |
Pubbl/distr/stampa | Singapore, : Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina | 620.001/1 |
Altri autori (Persone) |
MiaraBernadette
StavroulakisG. E (Georgios E.) ValenteVanda |
Soggetto topico |
Smart materials - Mathematical models
Smart structures - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-12126-6
9786611121266 981-270-687-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index |
Record Nr. | UNINA-9910450667803321 |
Singapore, : Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topics on mathematics for smart systems [[electronic resource] ] : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente |
Pubbl/distr/stampa | Singapore, : Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina | 620.001/1 |
Altri autori (Persone) |
MiaraBernadette
StavroulakisG. E (Georgios E.) ValenteVanda |
Soggetto topico |
Smart materials - Mathematical models
Smart structures - Mathematical models |
ISBN |
1-281-12126-6
9786611121266 981-270-687-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index |
Record Nr. | UNINA-9910784042203321 |
Singapore, : Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topics on mathematics for smart systems : proceedings of the European Conference, Rome, Italy, 26-28 October 2006 / / editors, Bernadette Miara, Georgios Stavroulakis, Vanda Valente |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore, : Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (283 p.) |
Disciplina | 620.001/1 |
Altri autori (Persone) |
MiaraBernadette
StavroulakisG. E (Georgios E.) ValenteVanda |
Soggetto topico |
Smart materials - Mathematical models
Smart structures - Mathematical models |
ISBN |
1-281-12126-6
9786611121266 981-270-687-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; Topics on Mathematics for Smart Systems; A Phenomenological 3D Model Describing Stress-Induced Solid Phase Transformations with Permanent Inelasticity F. Auricchio, A. Reali and U. Stefanelli; Numerical Analysis of a Frictionless Piezoelectric Contact Problem Arising in Viscoelasticity M. Barboteu, J. R. Ferncindez and Y. Ouafik; A Stabilized MITC6 Triangular Shell Element L. Beiriio da Vezga, D. Chapelle and I. Paris; A New Family of C0 Finite Elements for the Kirchhoff Plate Model L. Beiriio da Veiga, J. Niiranen and R. Stenberg
Modeling and Simulation of Piezoelectric-Active Control of Wind-Induced Vibrations on Beams M. Betti, C. C. Baniotopoulos and G. E. Stavroulakis A Numerical Library for Shells Described by the Intrinsic Geometric Modeling via the Oriented Distance Function J. Cagnol and V. Sansalone; A Contact Problem for Viscoelastic Materials with Long Memory Involving Damage M. Carnpo, J. R. Ferncindez and A. Rodriguez-Aros; Memory Effects Arising in the Homogenization of Composites with Inclusions L. Faella and S. Monsurrd Numerical Experiments on the Controllability of the Ginzburg-Landau Equation R. Garzon and V. Valente Homogenization of Thin Piezoelectric Perforated Shells M. Ghergu, G. Griso and B. Miara; Damaged Support Identification in Aluminium Curtain-Walls Using Neural Networks P. Nazarko, L. Ziemianski, Ch. Efstathiades, C. C. Baniotopoulos and G. E. Stavroulakis; Mathematical Results on the Stability of Quasi-Static Paths of Elastic-Plastic Systems with Hardening A. Petrov, J. A. C. Martins and M. D. P. Monteiro Marques Mathematical Results on the Stability of Quasi-Static Paths of Smooth Systems N. V. Rebrova, J. A. C. Martins and V. A. Sobolev Sensitivity Analysis of Acoustic Wave Propagation in Strongly Heterogeneous Piezoelectric Composite E. Rohan and B. Miara; New Results on the Stability of Quasi-Static Paths of a Single Particle System with Coulomb Friction and Persistent Contact F. Schmid, J. A. C. Martins and N. Rebrova; Numerical Experiments on Smart Beams and Plates G. E. Stavroulakis, D. G. Marinova, G. A. Foutsitzi, E. P. Hadjigeorgiou, E. C. Zacharenakis and C. C. Baniotopoulos On Modeling, Analytical Study and Homogenization for Smart Materials A. Timofte The Cardiovascular System as a Smart System M. Tringelova, P. Nardinocchi, L. Teresi and A. Di Carlo; Author Index |
Altri titoli varianti | Mathematics for smart systems |
Record Nr. | UNINA-9910814897103321 |
Singapore, : Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|