Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer |
Autore | Markus L (Lawrence), <1922-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1974 |
Descrizione fisica | 1 online resource (57 p.) |
Disciplina | 515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Differential equations |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9944-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References"" |
Record Nr. | UNINA-9910480121403321 |
Markus L (Lawrence), <1922-> | ||
Providence : , : American Mathematical Society, , 1974 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer |
Autore | Markus L (Lawrence), <1922-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1974 |
Descrizione fisica | 1 online resource (57 p.) |
Disciplina | 515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Differential equations |
ISBN | 0-8218-9944-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References"" |
Record Nr. | UNINA-9910788615603321 |
Markus L (Lawrence), <1922-> | ||
Providence : , : American Mathematical Society, , 1974 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer |
Autore | Markus L (Lawrence), <1922-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1974 |
Descrizione fisica | 1 online resource (57 p.) |
Disciplina | 515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Hamiltonian systems
Differential equations |
ISBN | 0-8218-9944-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References"" |
Record Nr. | UNINA-9910827787203321 |
Markus L (Lawrence), <1922-> | ||
Providence : , : American Mathematical Society, , 1974 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1988] |
Descrizione fisica | 1 online resource (286 p.) |
Disciplina | 515.3/52 |
Collana | Contemporary mathematics |
Soggetto topico |
Hamiltonian systems
Celestial mechanics - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-7669-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics"" |
Record Nr. | UNINA-9910480943103321 |
Providence, Rhode Island : , : American Mathematical Society, , [1988] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1988] |
Descrizione fisica | 1 online resource (286 p.) |
Disciplina | 515.3/52 |
Collana | Contemporary mathematics |
Soggetto topico |
Hamiltonian systems
Celestial mechanics - Mathematics |
ISBN | 0-8218-7669-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics"" |
Record Nr. | UNINA-9910788787503321 |
Providence, Rhode Island : , : American Mathematical Society, , [1988] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1988] |
Descrizione fisica | 1 online resource (286 p.) |
Disciplina | 515.3/52 |
Collana | Contemporary mathematics |
Soggetto topico |
Hamiltonian systems
Celestial mechanics - Mathematics |
ISBN | 0-8218-7669-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics"" |
Record Nr. | UNINA-9910827452003321 |
Providence, Rhode Island : , : American Mathematical Society, , [1988] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
Autore | McCord Christopher Keil |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
Descrizione fisica | 1 online resource (106 p.) |
Disciplina | 521 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0217-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
Record Nr. | UNINA-9910480228503321 |
McCord Christopher Keil | ||
Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
Autore | McCord Christopher Keil |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
Descrizione fisica | 1 online resource (106 p.) |
Disciplina | 521 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
ISBN | 1-4704-0217-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
Record Nr. | UNINA-9910788734503321 |
McCord Christopher Keil | ||
Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
Autore | McCord Christopher Keil |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
Descrizione fisica | 1 online resource (106 p.) |
Disciplina | 521 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
ISBN | 1-4704-0217-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
Record Nr. | UNINA-9910820698503321 |
McCord Christopher Keil | ||
Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|