top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Autore Markus L (Lawrence), <1922->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1974
Descrizione fisica 1 online resource (57 p.)
Disciplina 515/.35
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Differential equations
Soggetto genere / forma Electronic books.
ISBN 0-8218-9944-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References""
Record Nr. UNINA-9910480121403321
Markus L (Lawrence), <1922->  
Providence : , : American Mathematical Society, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Autore Markus L (Lawrence), <1922->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1974
Descrizione fisica 1 online resource (57 p.)
Disciplina 515/.35
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Differential equations
ISBN 0-8218-9944-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References""
Record Nr. UNINA-9910788615603321
Markus L (Lawrence), <1922->  
Providence : , : American Mathematical Society, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Generic Hamiltonian dynamical systems are neither integrable nor ergodic / / L. Markus and K.R. Meyer
Autore Markus L (Lawrence), <1922->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1974
Descrizione fisica 1 online resource (57 p.)
Disciplina 515/.35
Collana Memoirs of the American Mathematical Society
Soggetto topico Hamiltonian systems
Differential equations
ISBN 0-8218-9944-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Table of Contents""; ""1. The Problem of Transitivity in Classical Mechanics""; ""2. Global Hamiltonian Dynamics on Symplectic Manifolds""; ""3. Action-Angle Coordinates and Integrability""; ""4. Elliptic Equilibria and Ergodicity""; ""5. Superintegrability and Some Remarks on Noncompact Manifolds""; ""References""
Record Nr. UNINA-9910827787203321
Markus L (Lawrence), <1922->  
Providence : , : American Mathematical Society, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1988]
Descrizione fisica 1 online resource (286 p.)
Disciplina 515.3/52
Collana Contemporary mathematics
Soggetto topico Hamiltonian systems
Celestial mechanics - Mathematics
Soggetto genere / forma Electronic books.
ISBN 0-8218-7669-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics""
Record Nr. UNINA-9910480943103321
Providence, Rhode Island : , : American Mathematical Society, , [1988]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1988]
Descrizione fisica 1 online resource (286 p.)
Disciplina 515.3/52
Collana Contemporary mathematics
Soggetto topico Hamiltonian systems
Celestial mechanics - Mathematics
ISBN 0-8218-7669-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics""
Record Nr. UNINA-9910788787503321
Providence, Rhode Island : , : American Mathematical Society, , [1988]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Hamiltonian dynamical systems : proceedings of the AMS-IMS-SIAM joint summer research conference held June 21-27, 1987, University of Colorado / / Kenneth R. Meyer and Donald G. Saari, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [1988]
Descrizione fisica 1 online resource (286 p.)
Disciplina 515.3/52
Collana Contemporary mathematics
Soggetto topico Hamiltonian systems
Celestial mechanics - Mathematics
ISBN 0-8218-7669-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""The prescribed energy problem for periodic solutions of Hamiltonian systems""""Homoclinic and heteroclinic phenomena in some Hamiltonian systems""; ""Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations""; ""The three point vortex problem: Commutative and non-commutative integrability""; ""On a theorem of Ziglin in Hamiltonian dynamics""
Record Nr. UNINA-9910827452003321
Providence, Rhode Island : , : American Mathematical Society, , [1988]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
Autore McCord Christopher Keil
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1998
Descrizione fisica 1 online resource (106 p.)
Disciplina 521
Collana Memoirs of the American Mathematical Society
Soggetto topico Three-body problem
Celestial mechanics
Manifolds (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-4704-0217-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse""
""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography""
Record Nr. UNINA-9910480228503321
McCord Christopher Keil  
Providence, Rhode Island : , : American Mathematical Society, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
Autore McCord Christopher Keil
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1998
Descrizione fisica 1 online resource (106 p.)
Disciplina 521
Collana Memoirs of the American Mathematical Society
Soggetto topico Three-body problem
Celestial mechanics
Manifolds (Mathematics)
ISBN 1-4704-0217-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse""
""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography""
Record Nr. UNINA-9910788734503321
McCord Christopher Keil  
Providence, Rhode Island : , : American Mathematical Society, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
Autore McCord Christopher Keil
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1998
Descrizione fisica 1 online resource (106 p.)
Disciplina 521
Collana Memoirs of the American Mathematical Society
Soggetto topico Three-body problem
Celestial mechanics
Manifolds (Mathematics)
ISBN 1-4704-0217-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse""
""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography""
Record Nr. UNINA-9910820698503321
McCord Christopher Keil  
Providence, Rhode Island : , : American Mathematical Society, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui