Banach Lattices [[electronic resource] /] / by Peter Meyer-Nieberg |
Autore | Meyer-Nieberg Peter |
Edizione | [1st ed. 1991.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1991 |
Descrizione fisica | 1 online resource (XV, 395 p.) |
Disciplina | 512/.55 |
Collana | Universitext |
Soggetto topico |
Functions of real variables
Real Functions |
ISBN | 3-642-76724-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Riesz Spaces -- 1.1 Basic Properties of Riesz Spaces and Banach Lattices -- 1.2 Sublattices, Ideals, and Bands -- 1.3 Regular Operators and Order Bounded Functionals -- 1.4 Duality of Riesz Spaces, the Nakano Theory -- 1.5 Extensions of Positive Operators -- 2 Classical Banach Lattices -- 2.1 C(K)-Spaces and M-Spaces -- 2.2 Complex Riesz Spaces -- 2.3 Disjoint Sequences and Approximately Order Bounded Sets -- 2.4 Order Continuity of the Norm, KB-Spaces and the Fatou Property -- 2.5 Weak Compactness -- 2.6 Banach Function Spaces -- 2.7 Lp-Spaces and Related Results -- 2.8 Cone p-Absolutely Summing Operators and p-Subadditive Norms -- 3 Operators on Riesz Spaces and Banach Lattices -- 3.1 Disjointness Preserving Operators and Orthomorphisms on Riesz Spaces -- 3.2 Operators on L-and M-Spaces -- 3.3 Kernel Operators -- 3.4 Order Weakly Compact Operators -- 3.5 Weakly Compact Operators -- 3.6 Approximately Order Bounded Operators -- 3.7 Compact Operators and Dunford-Pettis Operators -- 3.8 Tensor Products of Banach Lattices -- 3.9 Vector Measures and Vectorial Integration -- 4 Spectral Theory of Positive Operators -- 4.1 Spectral Properties of Positive Linear Operators -- 4.2 Irreducible Operators -- 4.3 Measures of Non-Compactness -- 4.4 Local Spectral Theory for Positive Operators -- 4.5 Order Spectrum of Regular Operators -- 4.6 Disjointness Preserving Operators and the Zero-Two Law -- 5 Structures in Banach Lattices -- 5.1 Banach Space Properties of Banach Lattices -- 5.2 Banach Lattices with Subspaces Isomorphic to C(?), C(0,l), and L1(0,1) -- 5.3 Grothendieck Spaces -- 5.4 Radon-Nikodym Property in Banach Lattices -- References. |
Record Nr. | UNINA-9910480300703321 |
Meyer-Nieberg Peter
![]() |
||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1991 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Banach Lattices [[electronic resource] /] / by Peter Meyer-Nieberg |
Autore | Meyer-Nieberg Peter |
Edizione | [1st ed. 1991.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1991 |
Descrizione fisica | 1 online resource (XV, 395 p.) |
Disciplina | 512/.55 |
Collana | Universitext |
Soggetto topico |
Functions of real variables
Real Functions |
ISBN | 3-642-76724-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Riesz Spaces -- 1.1 Basic Properties of Riesz Spaces and Banach Lattices -- 1.2 Sublattices, Ideals, and Bands -- 1.3 Regular Operators and Order Bounded Functionals -- 1.4 Duality of Riesz Spaces, the Nakano Theory -- 1.5 Extensions of Positive Operators -- 2 Classical Banach Lattices -- 2.1 C(K)-Spaces and M-Spaces -- 2.2 Complex Riesz Spaces -- 2.3 Disjoint Sequences and Approximately Order Bounded Sets -- 2.4 Order Continuity of the Norm, KB-Spaces and the Fatou Property -- 2.5 Weak Compactness -- 2.6 Banach Function Spaces -- 2.7 Lp-Spaces and Related Results -- 2.8 Cone p-Absolutely Summing Operators and p-Subadditive Norms -- 3 Operators on Riesz Spaces and Banach Lattices -- 3.1 Disjointness Preserving Operators and Orthomorphisms on Riesz Spaces -- 3.2 Operators on L-and M-Spaces -- 3.3 Kernel Operators -- 3.4 Order Weakly Compact Operators -- 3.5 Weakly Compact Operators -- 3.6 Approximately Order Bounded Operators -- 3.7 Compact Operators and Dunford-Pettis Operators -- 3.8 Tensor Products of Banach Lattices -- 3.9 Vector Measures and Vectorial Integration -- 4 Spectral Theory of Positive Operators -- 4.1 Spectral Properties of Positive Linear Operators -- 4.2 Irreducible Operators -- 4.3 Measures of Non-Compactness -- 4.4 Local Spectral Theory for Positive Operators -- 4.5 Order Spectrum of Regular Operators -- 4.6 Disjointness Preserving Operators and the Zero-Two Law -- 5 Structures in Banach Lattices -- 5.1 Banach Space Properties of Banach Lattices -- 5.2 Banach Lattices with Subspaces Isomorphic to C(?), C(0,l), and L1(0,1) -- 5.3 Grothendieck Spaces -- 5.4 Radon-Nikodym Property in Banach Lattices -- References. |
Record Nr. | UNINA-9910789215803321 |
Meyer-Nieberg Peter
![]() |
||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1991 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|