| Autore |
Meyer Paul André
|
| Edizione | [1st ed. 1993.] |
| Pubbl/distr/stampa |
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1993]
|
| Descrizione fisica |
1 online resource (X, 293 p.)
|
| Disciplina |
519.2
|
| Collana |
Lecture Notes in Mathematics
|
| Soggetto topico |
Distribution (Probability theory)
Quantum theory
|
| ISBN |
3-662-21558-6
|
| Classificazione |
81S25
|
| Formato |
Materiale a stampa  |
| Livello bibliografico |
Monografia |
| Lingua di pubblicazione |
eng
|
| Nota di contenuto |
I: Non Commutative Probability -- II: Spin -- III: The Harmonic Oscillator -- IV: Fock Space (1) -- V. Multiple Fock Spaces -- VI. Stochastic Calculus on Fock Space -- VII. Independence -- Appendix 1: Functional Analysis -- Hilbert-Schmidt operators (1) -- Trace class operators (2) -- Duality properties (3) Weak convergence properties (4) -- Weak topologies for operators (5) -- Tensor products of Hilbert spaces (6–7) -- Appendix 2: Conditioning and Kernels -- Conditioning: discrete case (1) -- Conditioning: continuous case (2) -- Example of the canonical pair (3) -- Multiplicity theory (4) -- Classical kernels (5) -- Non commutative kernels, first form (6) -- second form (7) -- Completely positive maps (8) -- Some difficulties (9) -- Appendix 3: Two Events -- 1. Elementary theory -- Application of spectral theory (2) -- Some elementary properties (3) -- Positive elements (4) -- Symbolic calculus for s.a. elements (5) -- Applications (6) -- Characterization of positive elements (7) -- A few inequalities (8) -- Existence of many states (1) -- Representations and the GNS theorem (2–3) -- Examples from toy Fock space theory (4) -- Quotient algebras and approximate units (5) -- 3. Von Neumann algebras -- Weak topologies and normal states (1) -- Von Neumann’s bicommutant theorem (2–3) -- Kaplanski’s density theorem (4) -- The predual (5) -- Normality and order continuity (6) -- About integration theory (7) -- Measures with bounded density (8) -- The linear Radon-Nikodym theorem (9) -- The KMS condition (10) -- Entire vectors (11) -- 4. The Tomita-Takesaki theory -- Elementary geometric properties (1) -- The main operators (2–3) -- Interpretation of the adjoint (4) -- The modular property (5) -- Using the linear RN theorem (6) -- The main computation (7) -- The three main theorems (8) -- Additional results (9) -- Examples (10) -- Appendix 5: Local Times and Fock Space -- 1. Dynkin’s formula -- Symmetric Markov semigroups and processes (1) -- Dynkin’s formula (2) -- Sketch of the Marcus-Rosen approach to the continuity of local times (3) -- 2. Le Jan’s “supersymmetric” approach -- Notations of complex Brownian motion (1) -- Computing the Wiener product (2) -- Stratonovich integral and trace (4) -- Expectation of the exponential of an element of the second chaos (5) -- Exponential formula in the antisymmetric case (7) -- Supersymmetric Fock space: the Wick and Wiener products (8) -- Properties of the Wiener product (9) -- Applications to local times (sketch) (10) -- References -- Index of Notation.
|
| Record Nr. | UNISA-996466600003316 |