top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Disaster Management and Environmental Sustainability
Disaster Management and Environmental Sustainability
Autore Kumar Sanjay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (299 pages)
Disciplina 363.34
Altri autori (Persone) SinghSuraj Kumar
KangaShruti
MerajGowhar
FarooqMajid
NathawatM. S
Soggetto topico Disaster relief
Environmental degradation
ISBN 9781394167463
1394167466
9781394167456
1394167458
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Editorial -- Preface -- Acknowledgments -- Chapter 1 Assessment of Changes in River Morphology Due to Illegal Sand Mining by Geospatial Techniques -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.4 Conclusion -- References -- Chapter 2 Feasibility of Solar Power Generation Potential in Una, Bilaspur, Solan, and Sirmaur Districts of Himachal Pradesh Using Geospatial Techniques -- 2.1 Introduction -- 2.2 Material and Methods -- 2.3 Statistical Summary, Results, and Analysis -- 2.4 Conclusion -- Limitations of the Study -- References -- Chapter 3 Assessment of the Drivers of Domestic Water Consumption Pattern in Growing Population of Idah LGA, Kogi State, Nigeria -- 3.1 Introduction -- 3.2 Study Area -- 3.3 Methodology -- 3.4 Result and Discussion -- 3.4.1 Demographic Characteristics of Respondents -- 3.4.2 Sources of Water for Domestic Uses within the Study Area -- 3.4.3 Magnitude of Household Water Demand in the Study Area -- 3.4.4 Consumption Pattern of Water in the Study Area -- 3.4.5 Factors Influencing Consumption Pattern of Household Water in the Study Area -- 3.5 Conclusion and Recommendations -- References -- Chapter 4 Disaster Risk Reduction and Risk Management: A Conceptual Framework -- 4.1 Introduction -- 4.2 Types of Disasters -- 4.3 Disasters in Different Paradigms -- 4.4 Criteria for Disasters -- 4.5 Disaster Risk -- 4.6 Disaster Risk Reduction (DRR) -- 4.7 Disaster Risk Management (DRM) -- 4.7.1 Indicators of Disaster Risk Management -- 4.7.2 Measures of Disaster Management -- 4.8 Conclusion -- References -- Chapter 5 Impact of Environmental Degradation and Disaster Happenings on Human Health -- 5.1 Introduction -- 5.2 Methods, Results and Discussion -- 5.2.1 Environmental Degradation -- 5.2.2 Human Health.
5.2.3 Impact of Environmental Degradation on Human Health -- 5.2.4 Remedies: Environmental Education and Simple Measuring Techniques -- 5.3 Conclusions -- References -- Chapter 6 Impact of Development on Environmental Degradation: An Indian Diaspora -- 6.1 Introduction -- 6.2 Environmental Degradation -- 6.3 Conclusion -- References -- Chapter 7 Food Crisis During Covid-19 Pandemic Among Migrants: A Study With Reference to Rohtak City (Haryana) -- 7.1 Introduction -- 7.2 Study Area -- 7.3 Patterns and Reasons for Migration -- 7.4 Objectives -- 7.5 Data Source and Methodology -- 7.6 Results and Discussions -- 7.7 Policy Suggestions and Way Forward -- 7.8 Conclusions -- References -- Chapter 8 Crime Against Women in Patna and Its Environs: Degradation in Social Environment -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Conclusions and Suggestions -- References -- Chapter 9 Expansion of Irrigation Facilities and Its Impact on Cropping Intensity: A Spatio-Temporal Analysis With Reference to Haryana -- 9.1 Introduction -- 9.2 Objectives -- 9.3 Study Area -- 9.4 Database and Methodology -- 9.5 Results and Discussion -- 9.5.1 Trends of Cropping Intensity in Haryana -- 9.5.2 Spatial Pattern of Cropping Intensity -- 9.6 Relationship Between the Extent of Irrigation and Cropping Intensity -- 9.7 Conclusion -- References -- Chapter 10 Dwindling Forest Cover and Environmental Degradation: A Case Study of Bihar -- 10.1 Introduction -- 10.2 Objectives -- 10.3 Research Design -- 10.4 Study Area -- 10.5 Results and Discussion -- 10.6 Conclusion -- References -- Chapter 11 Environment and Sustainable Development: Issues and Challenges -- 11.1 Introduction -- 11.2 Environment and Development -- 11.3 Environmental Ethical Issues and Development -- 11.4 Measures and Suggestions -- References -- Chapter 12 Government Programs and Policies Towards Green Environment.
12.1 Environmental Laws -- 12.1.1 Importance of Legal Laws Related to Environment -- 12.2 Major Programs and Policies of India Towards Green Environment -- 12.2.1 Wildlife Protection Act (1972) of India -- 12.2.2 Water (Prevention and Control of Pollution) Act, 1974 -- 12.2.3 Tiwary Committee (1980) -- 12.2.4 Air (Prevention and Control of Pollution) Act, 1981 -- 12.2.5 Forests (Conservation) Act, 1980 -- 12.2.6 Amended Forest Act, 1992 -- 12.2.7 Environment (Protection) Act, 1986 -- 12.2.7.1 Salient Features -- 12.2.8 Indian Environmental Policy (1992) -- 12.2.9 National Environmental Policy 2006 -- 12.2.9.1 Objectives of National Environment Policy, 2006 -- 12.2.10 National Action Plan on Climate Change -- 12.2.11 Recent Environmental Programs in India -- 12.3 Conclusion -- References -- Chapter 13 Use of Geospatial Technique in Urban Flood Hazard Management -- 13.1 Introduction -- 13.2 A GIS-Based Method for Identifying Flood Risk -- Conclusion -- References -- Chapter 14 Impact of Urbanization on Infrastructure and Environment of the Cities in Bihar -- 14.1 Introduction -- Conclusion -- References -- Chapter 15 Uses of Wi-Fi Technology and Its Effects on Social Life -- 15.1 Introduction -- 15.2 Origin of Wi-Fi -- 15.3 Uses of Wi-Fi -- 15.4 How Wi-Fi Works -- 15.5 Tools -- 15.5.1 Terms, Uses, and Communication -- 15.6 Effect on Society -- 15.6.1 Positive Effect of Wi-Fi on Society -- 15.6.2 Negative Effect of Wi-Fi on Society -- 15.6.3 Some Myths about Wi-Fi Technology -- 15.6.4 False Claims About Wi-Fi Health Risks -- 15.7 Results -- 15.8 Conclusion -- Acknowledgment -- References -- Chapter 16 Application of Remote Sensing and GIS in Disaster Management: An Applied Review -- 16.1 Introduction -- 16.2 Classification of Disasters -- 16.3 Disaster Management Cycle -- 16.3.1 Application of Remote Sensing and GIS in Disaster Management.
16.3.2 Phases of Disaster Management -- 16.4 Conclusion -- References -- Chapter 17 Population Change and Its Impact on the Shortfall of Groundwater: A Case Study of Berhampore in Murshidabad, West Bengal -- 17.1 Introduction -- 17.2 Berhampore and Groundwater Condition -- 17.3 Origin of Berhampore -- 17.4 Social Upliftment of Berhampore -- 17.5 Analysis -- 17.6 Conclusion -- References -- Chapter 18 Development of Future Rule Curves for KLRS Pulichintala Reservoir Operation Using SWAT and GA Models -- 18.1 Introduction -- 18.2 Study Area and Data -- 18.3 Methodology -- 18.3.1 Soil Water Assessment Tool Model -- 18.3.2 Genetic Algorithm Model -- 18.4 Results and Discussion -- 18.4.1 KLRS Pulichintala Basin SWAT Results Discussion -- 18.4.2 KLRS Pulichintala Basin Optimization Results Discussion -- 18.5 Conclusion -- Acknowledgments -- References -- Chapter 19 Understanding the Relationship Between River Health and Society for River Restoration: A Review -- 19.1 Introduction -- 19.2 Rivers, Society, and Health -- 19.3 Impact of Changes in Water Ecosystemx Contents -- 19.4 What Are The Challenges? -- 19.5 What Are The Solutions? -- 19.5.1 Health Assessment Indicators -- 19.6 River Restoration -- 19.6.1 River Restoration Counters These Pressures Through a Wide Range of Social Benefits -- 19.6.2 Other Benefits of River Restoration -- 19.6.2.1 Classic Flood Risk Management -- 19.6.2.2 Modern Flood Risk Management -- 19.7 River Pollution -- 19.8 Environmental Flow Requirements -- 19.9 Conclusions -- References -- Chapter 20 Geospatial Mapping of Groundwater Potential Zones Using Multi-Criteria Decision Making AHP Approach in a Pisangan Watershed, Ajmer District (RAJ.) -- 20.1 Introduction -- 20.2 Remote Sensing and GIS Techniques -- 20.3 Analytical Hierarchical Process -- 20.4 Weighted Overlay Method -- 20.5 Study Region -- 20.6 Flowchart of Methodology.
20.7 Methodology -- 20.8 Multi-Influencing Factors of Groundwater Potential Zones -- 20.9 Results and Discussion -- 20.9.1 Weightage Calculation -- 20.9.2 Geomorphology -- 20.9.3 Land Use/Land Cover -- 20.9.4 Lineament Density -- 20.9.5 Drainage Density -- 20.9.6 Slope -- 20.9.7 Soil -- 20.9.8 Rainfall -- 20.9.9 Digital Elevation Model (DEM) -- 20.9.10 Delineating the Groundwater Potential Zone -- 20.9.11 Overlay Analysis for the Delineation of Groundwater Potential Zone -- 20.10 Conclusion -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9911018820403321
Kumar Sanjay  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geospatial Technology for Natural Resource Management
Geospatial Technology for Natural Resource Management
Autore Kanga Shruti
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (488 pages)
Altri autori (Persone) MerajGowhar
SinghSuraj Kumar
FarooqMajid
NathawatM. S
ISBN 1-394-16748-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Introduction -- Chapter 1 Hydro-Chemical Characterization and Geospatial Analysis of Groundwater for Drinking and Agriculture Usage in Bhandara District, Central India -- 1.1 Introduction -- 1.2 Study Area -- 1.3 Methodology -- 1.3.1 Data Used -- 1.3.2 Descriptive Statistics Analysis -- 1.3.3 Mann-Kendall Test (Non-Parametric Test) -- 1.3.4 Regression Model (Parametric Test) -- 1.3.5 Spearman's Rank Correlation Coefficient -- 1.3.6 Inverse Distance Weighing -- 1.3.7 Groundwater Quality -- 1.3.8 Piper Diagram -- 1.3.9 Groundwater for Drinking and Irrigation Purposes -- 1.4 Results and Discussion -- 1.4.1 Statistical Characteristics -- 1.4.2 Trend Analysis -- 1.4.3 Linear Regression Analysis -- 1.4.4 Spatial-Temporal Rainfall Distribution -- 1.4.5 Effects of Water Pollution -- 1.4.5.1 Solution Steps -- 1.4.5.2 Chemical Constituents of Groundwater -- 1.4.6 Drinking and Irrigation Purposes -- 1.5 Conclusion -- References -- Chapter 2 Technology-Driven Approaches to Enhance Disaster Response and Recovery -- 2.1 Introduction -- 2.1.1 The Importance of Disaster Management and the Challenges Faced During Emergencies -- 2.1.2 The Critical Role of Technology in Improving Disaster Response, Mitigation, and Recovery Efforts -- 2.1.3 Literature Review Related to Various Technology- Driven Approaches to Supplement Disaster Response and Recovery Strategies -- 2.2 Early Warning Systems -- 2.2.1 Remote Sensing and Satellite Technology -- 2.2.1.1 Use of Remote Sensing and Satellite Technology for Monitoring Natural Disasters such as Hurricanes, Floods, and Wildfires -- 2.2.1.2 Role of Satellite Imagery in Helping Early Detection, Tracking, and Prediction of Disaster Events -- 2.2.1.3 Examples of Successful Early Warning Systems Implemented Using Remote Sensing Data.
2.2.2 Sensor Networks and Internet of Things (IoT) -- 2.2.2.1 The Role of Sensor Networks and IoT Devices in Disaster Management -- 2.2.2.2 Use of Sensors to Monitor Various Parameters Like Temperature, Humidity, Seismic Activity, and Water Levels to Provide Early Warnings -- 2.2.2.3 The Importance of Data Integration and Real-Time Communication in Ensuring Timely Responses -- 2.3 Emergency Communication and Information Management -- 2.3.1 Mobile Technologies -- 2.3.1.1 Use of Mobile Phones, SMS Alerts and Mobile Apps in Disseminating Emergency Alerts and Information -- 2.3.1.2 Benefit of Using Mobile Technologies in Coordinating Rescue Operations, Locating Survivors and Providing Critical Updates to Affected Populations -- 2.3.1.3 Case Studies Where Mobile Technologies Played a Pivotal Role in Disaster Management -- 2.3.2 Social Media and Crowdsourcing -- 2.3.2.1 The Significance of Social Media Platforms in Disaster Management -- 2.3.2.2 Role of Social Media to Gather Real-Time Information, Identify Affected Areas, and Mobilize Volunteers -- 2.3.2.3 The Concept of Crowdsourcing and How it Can Assist in Data Collection, Damage Assessment, and Resource Allocation -- 2.4 Geospatial Technologies for Situational Awareness -- 2.4.1 Geographic Information Systems (GISs) -- 2.4.1.1 GIS and Its Applications in Disaster Management -- 2.4.1.2 Role of GIS in Creating Spatial Databases, Mapping Affected Areas, and Analyzing Vulnerability and Risk -- 2.4.1.3 Integration of GIS with Other Technologies for Better Situational Awareness -- 2.4.2 Unmanned Aerial Vehicles (UAVs) and Drones -- 2.4.2.1 Role of UAVs and Drones in Disaster Response and Recovery -- 2.4.2.2 Applications of UAVs in Aerial Surveys, Damage Assessment, and Search and Rescue Operations -- 2.4.2.3 Challenges and Ethical Considerations Associated with the Use of Drones in Disaster Management.
2.5 Data Analytics and Decision Support Systems -- 2.5.1 Big Data and Predictive Analytics -- 2.5.1.1 Big Data Analytics Application in Disaster Risk Assessment, Resource Allocation, and Decision Making -- 2.5.1.2 Potential of Predictive Analytics in Forecasting Disaster Impacts, Identifying Vulnerable Populations, and Optimizing Response Strategies -- 2.5.2 Artificial Intelligence (AI) and Machine Learning (ML) -- 2.5.2.1 The Use of AI and ML Techniques in Disaster Management -- 2.5.2.2 Applications of AI-Powered Algorithms for Analyzing Large Datasets, Automating Damage Assessment, and Supporting Evacuation Planning -- 2.5.2.3 Ethical Implications and Challenges of Using AI and ML in Disaster Response -- 2.6 Conclusion -- 2.6.1 Key Advancements in Technology for Disaster Management Discussed in the Chapter -- 2.6.2 The Need for Continued Research, Innovation, and Collaboration to Harness Technology's Full Potential in Mitigating the Impacts of Disasters -- 2.6.3 Vision for the Future, Where Technology Plays a Central Role in Building Resilient Communities and Enhancing Disaster Preparedness -- References -- Chapter 3 Integrating Sustainable Development Goals with the Management of Natural and Technological Hazards and Disaster Risk Reduction -- 3.1 Introduction -- 3.1.1 Types of Disasters/Hazards -- 3.1.1.1 Natural Disasters -- 3.1.1.2 Technological Hazards -- 3.1.1.3 Biological Hazards -- 3.1.1.4 Climate-Related Hazards -- 3.1.2 Disaster Management -- 3.1.3 Disaster Risk Reduction -- 3.2 SD and SDGs -- 3.2.1 Timeline of SDGs -- 3.2.2 Concept of Sustainability -- 3.2.3 Goal 1: No Poverty -- 3.2.4 Goal 2: Zero Hunger -- 3.2.5 Goal 3: Good Health and Well-Being -- 3.2.6 Goal 4: Quality Education -- 3.2.7 Goal 5: Gender Equality -- 3.2.8 Goal 6: Clean Water and Sanitation -- 3.2.9 Goal 7: Affordable and Clean Energy.
3.2.10 Goal 8: Decent Work and Economic Growth -- 3.2.11 Goal 9: Industry, Innovation, and Infrastructure -- 3.2.12 Goal 10: Reduced Inequality -- 3.2.13 Goal 11: Sustainable Cities and Communities -- 3.2.14 Goal 12: Responsible Consumption and Production -- 3.2.15 Goal 13: Climate Action -- 3.2.16 Goal 14: Life Below Water -- 3.2.17 Goal 15: Life on Land -- 3.2.18 Goal 16: Peace and Justice Strong Institutions -- 3.2.19 Goal 17: Partnerships to Achieve the Goal -- 3.3 Conclusion -- References -- Chapter 4 Hydrological and Morphometric Study of the Girna River Basin, Maharashtra Using Remote Sensing and GIS Techniques -- 4.1 Introduction -- 4.2 Study Area -- 4.3 Database and Methodology -- 4.4 Results and Discussion -- 4.4.1 Linear Aspects -- 4.4.1.1 Stream Order (Nu) -- 4.4.1.2 Stream Number (Nu) -- 4.4.1.3 Stream Length (Lu) and Mean/Average Stream Length (Lu1) -- 4.4.1.4 Stream Length Ratio (RL) -- 4.4.1.5 Bifurcation Ratio (Rb) -- 4.4.2 Areal Aspects -- 4.4.2.1 Drainage Density (Dd) -- 4.4.2.2 Stream Frequency (Fs) -- 4.4.2.3 Drainage Texture (Dt) -- 4.4.2.4 Elongation Ratio (Re) -- 4.4.2.5 Circularity Ratio (Rc) -- 4.4.2.6 Form Factor (Ff) -- 4.4.3 Relief Aspects -- 4.4.3.1 Basin Relief (R) -- 4.4.3.2 Relief Ratio (Rr) -- 4.4.3.3 Slope -- 4.4.3.4 Gradient Ratio -- 4.5 Conclusion -- Acknowledgments -- References -- Chapter 5 A Geospatial Analysis of the Effect of Waste Disposal on Groundwater Quality in Ife North Local Government Area, Osun State, Nigeria -- 5.1 Introduction -- 5.2 Study Area -- 5.3 Materials and Methods -- 5.3.1 Data -- 5.3.2 Data Analysis -- 5.4 Results and Discussion -- 5.4.1 Characteristics of Selected Dumpsites -- 5.4.2 Uses of Groundwater -- 5.4.3 Quality of Selected Groundwater -- Conclusion -- References.
Chapter 6 Enhancing Sustainable Natural Resource Management Through Innovative Use of Waste Materials in Concrete Production -- 6.1 Introduction -- 6.2 Data Collection and Methodology -- 6.2.1 Experimental Design -- 6.2.2 Mix Proportions -- 6.2.3 Preparation of Specimens -- 6.2.4 Curing Process -- 6.2.5 Testing of Specimens -- 6.3 Results and Analysis -- 6.3.1 Compressive Strength and Tensile Strength at 28 Days -- 6.3.2 Workability Results from Slump and Compaction Factor Tests -- 6.4 Conclusion -- References -- Chapter 7 Dynamics of Land Use/Land Cover of Watershed Changes in Kolhapur District Maharashtra -- 7.1 Introduction -- 7.2 Study Area -- 7.3 Methodology -- 7.4 Results and Discussion -- 7.4.1 Watershed KR 55 -- 7.4.2 Watershed KR 63 -- 7.4.3 Watershed KR 64 -- 7.4.4 Watershed KR 66 -- 7.4.5 Watershed KR 71 -- 7.4.6 Watershed KR 77 -- 7.5 Conclusion -- References -- Chapter 8 Formulation and Mapping of GIS-Based Smart Village Plan Using Drone Imagery -- 8.1 Introduction -- 8.2 Study Area -- 8.3 Materials and Methods -- 8.3.1 Existing Site Survey and Investigation - Gap Analysis -- 8.3.1.1 Physical Infrastructure -- 8.3.1.2 Sewage and Drainage -- 8.3.1.3 Sanitation -- 8.3.1.4 Power Supply -- 8.3.1.5 Solid Waste Management -- 8.3.1.6 Public Health -- 8.3.1.7 Road Infrastructure -- 8.3.1.8 Housing Infrastructure -- 8.3.1.9 Health Services -- 8.3.1.10 Education Facilities -- 8.3.1.11 Maternity and Childcare -- 8.3.1.12 Dungarpur Reelka Infrastructure Matrix -- 8.4 Results and Discussion -- 8.4.1 Solid Waste Management -- 8.4.2 Kill Waste -- 8.4.3 Drinking Water -- 8.4.4 Drainage -- 8.4.5 Rainwater Harvesting -- 8.4.6 Sewage -- 8.4.7 Solar Street Light -- 8.4.8 Solar Energy -- 8.4.9 Biogas Plant -- 8.4.10 Smart Agriculture -- 8.4.11 Organic Farming -- 8.4.12 Farming -- 8.4.13 Poultry Farming -- 8.4.14 Fish Farming -- 8.4.15 Ayurvedic Farming.
8.4.16 Smart Dairy.
Record Nr. UNINA-9910898094503321
Kanga Shruti  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IoT-Based Models for Sustainable Environmental Management : Sustainable Environmental Management
IoT-Based Models for Sustainable Environmental Management : Sustainable Environmental Management
Autore Parray Javid A
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (244 pages)
Disciplina 363.70028563
Altri autori (Persone) HaghiA. K
MerajGowhar
Collana Lecture Notes on Data Engineering and Communications Technologies Series
ISBN 9783031743740
9783031743733
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910908368803321
Parray Javid A  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Navigating Natural Hazards in Mountainous Topographies : Exploring the Challenges and Opportunities of Living / / edited by Gowhar Meraj, Shizuka Hashimoto, Pankaj Kumar
Navigating Natural Hazards in Mountainous Topographies : Exploring the Challenges and Opportunities of Living / / edited by Gowhar Meraj, Shizuka Hashimoto, Pankaj Kumar
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (313 pages)
Disciplina 368.382800983
Collana Disaster Risk Reduction, Methods, Approaches and Practices
Soggetto topico Natural disasters
Geomorphology
Physical geography
Environmental geography
Natural Hazards
Physical Geography
Integrated Geography
ISBN 9783031658624
9783031658617
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations and Frontiers: An Overview of Natural Hazard Management in Mountainous Regions -- Part I.Understanding the Hazards: Geospatial and Geological Insights -- Groundwater and its impact on landslides along Himalayan Regions-A Review Geospatial Modelling of Seismic Vulnerability using Entropy-AHP-A Case Study of the Himalayas -- Modeling Landslides Using Analytical Hierarchy Process (AHP) and Geospatial Techniques to Mitigate Hazard Risks in the High Mountain Himalayan Landscapes of Sikkim and Darjeeling, India -- Housing Lessons Post-2022 Afghanistan Earthquake -- The Damage and Reconstruction Challenges in Mountainous Areas in the July 2020 heavy rain disaster in Japan -- Cases of damage caused by mountain hazards that occurred in Japan from 2014 to 2022 -- Landslides information by geological environment in mountain hazards in Japan -- Part II.Approaches to Mitigation and Management: Leveraging Technology and Knowledge -- Wide-area extraction method for sediment runoff range after mountain disasters in Japan -- Harnessing Local and Indigenous Knowledge for Effective Geo-Hazard Mitigation and Management in Oke Imesi Ekiti, Nigeria -- A Comprehensive Guide to Stopping another Flood Calamity using geology and GIS applications-Case Study from Pakistan -- Application of Relative Effect Method for assessment of Landslide Susceptibility Mapping along Mughal road, NW Himalayan region, Jammu and Kashmir, India -- Community and Artificial Intelligence-Enabled Disaster Management and PreparednessRemote Sensing of ‘Ghost Villages’-The Challenge of Rural Migration in the Mountainous state of Uttarakhand, India -- Adventure in High Altitude of Mountainous Topographies and Health Impacts: Lensing Tourism Sustainability via Reducing Ecological and Sociocultural Footprint and Health Emergency and Medical Assistance Management -- Resilience and Recovery - Utilizing the Japan Assessment of Disaster Risks and Ecosystem Services (J-ADRES) Tool to Address Land Use and Infrastructure Challenges in Japan.
Record Nr. UNINA-9910881093203321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui