Colloidal Quantum Dot Light Emitting Diodes : Materials and Devices
| Colloidal Quantum Dot Light Emitting Diodes : Materials and Devices |
| Autore | Meng Hong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (400 pages) |
| ISBN | 9783527845125 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 History and Introduction of QDs and QDLEDs -- 1.1 Preparation Route of Quantum Dots -- 1.2 Light‐Emitting Characteristics of Quantum Dots -- 1.2.1 Particle Size and Emission Color -- 1.2.2 Quantum Dot Optical Property -- 1.2.2.1 Quantum Surface Effect -- 1.2.2.2 Quantum Size Effect -- 1.2.2.3 Quantum Confinement Effect -- 1.2.2.4 Quantum Tunnelling Effect -- 1.2.2.5 Quantum Optical Properties -- 1.2.3 Core-Shell Structure of QDs -- 1.2.4 Continuously Gradated Core-Shell Structure of QDs (cg‐QDs) -- 1.2.5 Typical QDs Materials -- 1.2.5.1 II-VI Semiconductor QDs -- 1.2.5.2 IV-VI Semiconductor QDs -- 1.2.5.3 II3-V2 Semiconductor QDs -- 1.2.5.4 Ternary I-III-VI2 Chalcopyrite Semiconductor QDs -- 1.2.5.5 Single Element‐Based Semiconductor QDs -- 1.3 Application of Quantum Dots on Display Devices -- 1.3.1 The Basic Structure of QDLED -- 1.3.2 Main Factors Affecting QDLED Light Emission -- 1.3.2.1 Auger Recombination (AR) -- 1.3.2.2 Fluorescence Resonance Energy Transfer -- 1.3.2.3 Surface Traps and Field Emission Burst -- 1.3.3 History of QDLED Development -- 1.4 Conclusion and Remarks -- References -- Chapter 2 Colloidal Semiconductor Quantum Dot LED Structure and Principles -- 2.1 Basic Concepts -- 2.1.1 Color Purity -- 2.1.2 Solution Processability -- 2.1.3 Stability -- 2.1.4 Surface States of Quantum Dots -- 2.1.5 Energy Levels and Energy Bands -- 2.1.6 Metals, Semiconductors, and Insulators -- 2.1.7 Electrons and Holes -- 2.1.8 Fermi Distribution Function and Fermi Energy Level -- 2.1.9 Schottky Barrier -- 2.1.10 Energy Level Alignment -- 2.2 Colloidal Quantum Dot Light‐Emitting Devices -- 2.2.1 The Basic Structure of QDLED -- 2.2.2 The Working Principle of QDLED -- 2.2.3 Operating Parameters of QDLED -- 2.2.3.1 Turn‐on Voltage -- 2.2.3.2 Luminous Brightness.
2.2.3.3 Luminous Efficiency -- 2.2.3.4 Luminescence Color -- 2.2.3.5 Luminous Lifetime -- 2.2.3.6 QDLED Device Fabrication Process -- References -- Chapter 3 Synthesis and Characterization of Colloidal Semiconductor Quantum Dot Materials -- 3.1 Background -- 3.2 Synthesis and Post‐processing of Colloidal Quantum Dots -- 3.2.1 Direct Heating Method and Hot Injection Synthesis Method -- 3.2.1.1 Hot‐Injection Method -- 3.2.1.2 Direct Heating Method -- 3.2.2 Precursor Chemistry -- 3.2.3 Ligating and Non‐ligating Solvents -- 3.2.4 Mechanism of Nucleation and Growth of Colloidal Quantum Dots -- 3.2.5 Size Distribution Focus and Size Distribution Scatter -- 3.2.6 Crystalline Species‐Mediated Growth and Orientation of Nanocrystals Attachment Growth -- 3.2.7 Synthesis Methods and Band Gap Regulation Engineering of Nuclear‐Shell Quantum Dots -- 3.2.7.1 Non‐alloyed Core-Shell Quantum Dots -- 3.2.7.2 Alloy Core-Shell Quantum Dots -- 3.2.8 Surface Chemistry of Colloidal Quantum Dots -- 3.2.8.1 Covalent Bond Classification Method -- 3.2.8.2 Entropic Ligands -- 3.3 Material Characterization -- 3.3.1 Ultraviolet-Visible (UV-Vis) Absorption and Fluorescence Spectra -- 3.3.2 Nuclear Magnetic Resonance Spectroscopy -- 3.3.3 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 3.3.5 Transmission Electron Microscopy -- 3.3.6 Small‐Angle X‐Ray Scattering and Wide‐Angle X‐Ray Scattering -- 3.3.7 X‐Ray Diffractometer -- 3.3.8 X‐Ray Absorption Fine Structure Spectra -- 3.3.9 Measurement of Fluorescence Quantum Yield -- 3.4 Conclusion and Outlook -- References -- Chapter 4 Red Quantum Dot Light‐Emitting Diodes -- 4.1 Background -- 4.2 Red Light Quantum Dot Materials -- 4.2.1 Materials -- 4.2.2 Quantum Dot Structure Design and Optimization -- 4.2.3 Surface Ligands -- 4.2.4 Core-Shell Structure -- 4.2.5 Alloy Core-Shell Structure. 4.3 Red QDLED Devices -- 4.3.1 Red QDLED Device Architecture Development -- 4.3.2 Common Device Structures -- 4.4 Conclusion and Outlook -- References -- Chapter 5 Green Quantum Dot LED Materials and Devices -- 5.1 Background -- 5.2 Commonly Used Luminescent Layer Materials in Green QDLEDs -- 5.2.1 Discrete Core/Shell Quantum Dots -- 5.2.2 Alloyed Core/Shell Quantum Dots -- 5.2.3 Core/Multilayer Shell Quantum Dots -- 5.3 Development of Device Structures for Green QDLEDs -- 5.4 Factors Affecting the Performance of Green QDLEDs -- 5.4.1 QD Ligand Effect -- 5.4.2 QD Core/Shell Structure -- 5.4.3 Optimization of the Device Structure -- 5.4.4 Other Strategies to Improve Device Performance -- 5.5 Summary and Outlook -- References -- Chapter 6 Blue Quantum Dot Light‐Emitting Diodes -- 6.1 Introduction -- 6.2 Blue Quantum Dot Luminescent Materials -- 6.2.1 Blue Quantum Dots Containing Cadmium -- 6.2.2 Cadmium‐Free Quantum Dots -- 6.2.2.1 Quantum Dots Based on InP -- 6.2.2.2 Quantum Dots Based on ZnSe -- 6.2.2.3 Quantum Dots Based on Cu -- 6.2.2.4 Quantum Dots Based on AlSb -- 6.3 Optimization of Charge Transport Layer (CTL) -- 6.3.1 Hole Transport Layer -- 6.3.2 Electron Transport Layer -- 6.4 Device Structure -- 6.5 Summary -- References -- Chapter 7 Near‐Infrared Quantum Dots (NIR QDs) -- 7.1 Introduction of Near‐Infrared Quantum Dots -- 7.2 Near‐Infrared Quantum Dot Materials -- 7.2.1 Chalcogenide Lead Quantum Dots -- 7.2.2 Chalcogenide Cadmium Quantum Dots -- 7.2.3 Silicon Quantum Dots -- 7.3 Optimization of Near‐Infrared Quantum Dot Materials -- 7.3.1 Regulation of Near‐Infrared Quantum Dots by Ligand Engineering -- 7.3.2 Control of Near‐Infrared Quantum Dots by Core/Shell Structure -- 7.3.3 Quantum Dots in the Matrix -- 7.4 Summary and Prospect -- References -- Chapter 8 White QDLED -- 8.1 Generation of White Light -- 8.2 Quantum Dots for White LEDs. 8.2.1 Yellow-Blue Composite White Light Quantum Dots -- 8.2.1.1 Cadmium‐Containing Yellow Light Quantum Dots -- 8.2.1.2 Cadmium‐Free Yellow Light Quantum Dots -- 8.2.2 Three‐Base Color Quantum Dot Composite -- 8.2.3 Quantum Dots with Direct White Light Emission -- 8.3 Summary Outlook -- References -- Chapter 9 Non‐Cadmium Quantum Dot Light‐Emitting Materials and Devices -- 9.1 Introduction -- 9.2 Quantum Dots and QDLED -- 9.2.1 InP -- 9.2.2 ZnSe -- 9.2.3 I‐III‐VI -- 9.3 Methods for Optimizing QDLED Performance -- 9.3.1 Ligand Engineering -- 9.3.2 Shell Engineering -- 9.3.3 QDLED Device Structure Optimization -- 9.4 Summary and Outlook -- References -- Chapter 10 AC‐Driven Quantum Dot Light‐Emitting Diodes -- 10.1 Principle of Luminescence of DC and AC‐Driven QDLEDs -- 10.2 Mechanism of Double‐Emission Tandem Structure of AC QDLEDs -- 10.2.1 Field‐Generated AC QDLEDs -- 10.2.2 Half‐Field to Half‐Injection AC QDLEDs -- 10.2.3 AC/DC Dual Drive Mode QDLEDs -- 10.3 Optimization Strategies for AC QDLEDs -- 10.3.1 Optimization of the Field‐Induced AC QDLED -- 10.3.1.1 Dielectric Layer Optimization -- 10.3.1.2 Quantum Dot Layer Optimization -- 10.3.2 Optimization of Half‐Field‐Driven Half‐Injected AC QDLEDs -- 10.3.2.1 Charge Generation Layer Optimization -- 10.3.2.2 Tandem Structure -- 10.3.2.3 AC/DC Dual Drive Mode QDLED Optimization -- 10.3.3 Conclusion and Future Direction of AC‐QDLED -- References -- Chapter 11 Stability Study and Decay Mechanism of Quantum Dot Light‐Emitting Diodes -- 11.1 Quantum Dot Light‐Emitting Diode Stability Research Status -- 11.2 Factors Affecting the Stability of Quantum Dot Light‐Emitting Diodes -- 11.2.1 Quantum Dot Light‐Emitting Layer -- 11.2.2 Hole Transport Layer -- 11.2.3 Electronic Transport Layer -- 11.2.4 Other Functional Layers -- 11.3 Quantum Dot Light‐Emitting Diode Efficiency Decay Mechanism. 11.4 Aging Mechanisms of QDLEDs -- 11.4.1 Positive Aging -- 11.4.2 Negative Aging -- 11.4.3 Electron Transport Layer -- 11.4.4 Hole Transport Layer -- 11.4.5 QDs Layer -- 11.5 Characterization Technologies for QDLEDs -- 11.5.1 Transient Electroluminescence -- 11.5.2 Electro‐Absorption (EA) Spectroscopy -- 11.5.3 In‐Situ EL-PL Measurement -- 11.5.4 Differential Absorption Spectroscopy -- 11.5.5 Displacement Current Measurement DCM Technology -- 11.6 Outlook -- References -- Chapter 12 Electron/Hole Injection and Transport Materials in Quantum Dot Light‐Emitting Diodes -- 12.1 Introduction -- 12.2 Charge‐Transport Mechanisms -- 12.3 Electron Transport Materials (ETMs) for QDLED -- 12.3.1 Metal‐Doped ETMs -- 12.3.2 Metal Salt‐Doped ETMs -- 12.3.3 Design of Composite Materials ETMs -- 12.3.4 Polymer‐Modified ETMs -- 12.3.5 Inorganic Organic Hybrid ETMs -- 12.3.6 Double‐Stacked ETMs -- 12.4 Electron Injection Materials for QDLED -- 12.5 Hole Transport Materials for QDLED -- 12.5.1 Doping of HTMs -- 12.5.2 Compositions of HTMS -- 12.5.3 New HTM Materials for QDLED -- 12.6 Hole Injection Materials for QDLED -- 12.7 Summary and Outlook -- References -- Chapter 13 Quantum Dot Industrial Development and Patent Layout -- 13.1 Introduction -- 13.2 Patent Layout -- 13.2.1 Nanosys -- 13.2.2 SAMSUNG -- 13.2.3 Nanoco -- 13.2.4 Najing Tech -- 13.2.5 CSOT -- 13.2.6 BOE -- 13.2.7 TCL -- 13.3 Summary and Outlook -- References -- Chapter 14 Patterning Techniques for Quantum Dot Light‐Emitting Diodes (QDLED) -- 14.1 Introduction -- 14.2 Photolithography -- 14.3 Micro‐Contact Transfer -- 14.4 Inkjet Printing -- 14.5 Other Patterning Techniques -- 14.6 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910829834903321 |
Meng Hong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Colloidal Quantum Dot Light Emitting Diodes : Materials and Devices
| Colloidal Quantum Dot Light Emitting Diodes : Materials and Devices |
| Autore | Meng Hong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (400 pages) |
| Disciplina | 621.381522 |
| Soggetto topico |
Quantum dots
Light emitting diodes |
| ISBN | 9783527845125 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 History and Introduction of QDs and QDLEDs -- 1.1 Preparation Route of Quantum Dots -- 1.2 Light‐Emitting Characteristics of Quantum Dots -- 1.2.1 Particle Size and Emission Color -- 1.2.2 Quantum Dot Optical Property -- 1.2.2.1 Quantum Surface Effect -- 1.2.2.2 Quantum Size Effect -- 1.2.2.3 Quantum Confinement Effect -- 1.2.2.4 Quantum Tunnelling Effect -- 1.2.2.5 Quantum Optical Properties -- 1.2.3 Core-Shell Structure of QDs -- 1.2.4 Continuously Gradated Core-Shell Structure of QDs (cg‐QDs) -- 1.2.5 Typical QDs Materials -- 1.2.5.1 II-VI Semiconductor QDs -- 1.2.5.2 IV-VI Semiconductor QDs -- 1.2.5.3 II3-V2 Semiconductor QDs -- 1.2.5.4 Ternary I-III-VI2 Chalcopyrite Semiconductor QDs -- 1.2.5.5 Single Element‐Based Semiconductor QDs -- 1.3 Application of Quantum Dots on Display Devices -- 1.3.1 The Basic Structure of QDLED -- 1.3.2 Main Factors Affecting QDLED Light Emission -- 1.3.2.1 Auger Recombination (AR) -- 1.3.2.2 Fluorescence Resonance Energy Transfer -- 1.3.2.3 Surface Traps and Field Emission Burst -- 1.3.3 History of QDLED Development -- 1.4 Conclusion and Remarks -- References -- Chapter 2 Colloidal Semiconductor Quantum Dot LED Structure and Principles -- 2.1 Basic Concepts -- 2.1.1 Color Purity -- 2.1.2 Solution Processability -- 2.1.3 Stability -- 2.1.4 Surface States of Quantum Dots -- 2.1.5 Energy Levels and Energy Bands -- 2.1.6 Metals, Semiconductors, and Insulators -- 2.1.7 Electrons and Holes -- 2.1.8 Fermi Distribution Function and Fermi Energy Level -- 2.1.9 Schottky Barrier -- 2.1.10 Energy Level Alignment -- 2.2 Colloidal Quantum Dot Light‐Emitting Devices -- 2.2.1 The Basic Structure of QDLED -- 2.2.2 The Working Principle of QDLED -- 2.2.3 Operating Parameters of QDLED -- 2.2.3.1 Turn‐on Voltage -- 2.2.3.2 Luminous Brightness.
2.2.3.3 Luminous Efficiency -- 2.2.3.4 Luminescence Color -- 2.2.3.5 Luminous Lifetime -- 2.2.3.6 QDLED Device Fabrication Process -- References -- Chapter 3 Synthesis and Characterization of Colloidal Semiconductor Quantum Dot Materials -- 3.1 Background -- 3.2 Synthesis and Post‐processing of Colloidal Quantum Dots -- 3.2.1 Direct Heating Method and Hot Injection Synthesis Method -- 3.2.1.1 Hot‐Injection Method -- 3.2.1.2 Direct Heating Method -- 3.2.2 Precursor Chemistry -- 3.2.3 Ligating and Non‐ligating Solvents -- 3.2.4 Mechanism of Nucleation and Growth of Colloidal Quantum Dots -- 3.2.5 Size Distribution Focus and Size Distribution Scatter -- 3.2.6 Crystalline Species‐Mediated Growth and Orientation of Nanocrystals Attachment Growth -- 3.2.7 Synthesis Methods and Band Gap Regulation Engineering of Nuclear‐Shell Quantum Dots -- 3.2.7.1 Non‐alloyed Core-Shell Quantum Dots -- 3.2.7.2 Alloy Core-Shell Quantum Dots -- 3.2.8 Surface Chemistry of Colloidal Quantum Dots -- 3.2.8.1 Covalent Bond Classification Method -- 3.2.8.2 Entropic Ligands -- 3.3 Material Characterization -- 3.3.1 Ultraviolet-Visible (UV-Vis) Absorption and Fluorescence Spectra -- 3.3.2 Nuclear Magnetic Resonance Spectroscopy -- 3.3.3 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 3.3.5 Transmission Electron Microscopy -- 3.3.6 Small‐Angle X‐Ray Scattering and Wide‐Angle X‐Ray Scattering -- 3.3.7 X‐Ray Diffractometer -- 3.3.8 X‐Ray Absorption Fine Structure Spectra -- 3.3.9 Measurement of Fluorescence Quantum Yield -- 3.4 Conclusion and Outlook -- References -- Chapter 4 Red Quantum Dot Light‐Emitting Diodes -- 4.1 Background -- 4.2 Red Light Quantum Dot Materials -- 4.2.1 Materials -- 4.2.2 Quantum Dot Structure Design and Optimization -- 4.2.3 Surface Ligands -- 4.2.4 Core-Shell Structure -- 4.2.5 Alloy Core-Shell Structure. 4.3 Red QDLED Devices -- 4.3.1 Red QDLED Device Architecture Development -- 4.3.2 Common Device Structures -- 4.4 Conclusion and Outlook -- References -- Chapter 5 Green Quantum Dot LED Materials and Devices -- 5.1 Background -- 5.2 Commonly Used Luminescent Layer Materials in Green QDLEDs -- 5.2.1 Discrete Core/Shell Quantum Dots -- 5.2.2 Alloyed Core/Shell Quantum Dots -- 5.2.3 Core/Multilayer Shell Quantum Dots -- 5.3 Development of Device Structures for Green QDLEDs -- 5.4 Factors Affecting the Performance of Green QDLEDs -- 5.4.1 QD Ligand Effect -- 5.4.2 QD Core/Shell Structure -- 5.4.3 Optimization of the Device Structure -- 5.4.4 Other Strategies to Improve Device Performance -- 5.5 Summary and Outlook -- References -- Chapter 6 Blue Quantum Dot Light‐Emitting Diodes -- 6.1 Introduction -- 6.2 Blue Quantum Dot Luminescent Materials -- 6.2.1 Blue Quantum Dots Containing Cadmium -- 6.2.2 Cadmium‐Free Quantum Dots -- 6.2.2.1 Quantum Dots Based on InP -- 6.2.2.2 Quantum Dots Based on ZnSe -- 6.2.2.3 Quantum Dots Based on Cu -- 6.2.2.4 Quantum Dots Based on AlSb -- 6.3 Optimization of Charge Transport Layer (CTL) -- 6.3.1 Hole Transport Layer -- 6.3.2 Electron Transport Layer -- 6.4 Device Structure -- 6.5 Summary -- References -- Chapter 7 Near‐Infrared Quantum Dots (NIR QDs) -- 7.1 Introduction of Near‐Infrared Quantum Dots -- 7.2 Near‐Infrared Quantum Dot Materials -- 7.2.1 Chalcogenide Lead Quantum Dots -- 7.2.2 Chalcogenide Cadmium Quantum Dots -- 7.2.3 Silicon Quantum Dots -- 7.3 Optimization of Near‐Infrared Quantum Dot Materials -- 7.3.1 Regulation of Near‐Infrared Quantum Dots by Ligand Engineering -- 7.3.2 Control of Near‐Infrared Quantum Dots by Core/Shell Structure -- 7.3.3 Quantum Dots in the Matrix -- 7.4 Summary and Prospect -- References -- Chapter 8 White QDLED -- 8.1 Generation of White Light -- 8.2 Quantum Dots for White LEDs. 8.2.1 Yellow-Blue Composite White Light Quantum Dots -- 8.2.1.1 Cadmium‐Containing Yellow Light Quantum Dots -- 8.2.1.2 Cadmium‐Free Yellow Light Quantum Dots -- 8.2.2 Three‐Base Color Quantum Dot Composite -- 8.2.3 Quantum Dots with Direct White Light Emission -- 8.3 Summary Outlook -- References -- Chapter 9 Non‐Cadmium Quantum Dot Light‐Emitting Materials and Devices -- 9.1 Introduction -- 9.2 Quantum Dots and QDLED -- 9.2.1 InP -- 9.2.2 ZnSe -- 9.2.3 I‐III‐VI -- 9.3 Methods for Optimizing QDLED Performance -- 9.3.1 Ligand Engineering -- 9.3.2 Shell Engineering -- 9.3.3 QDLED Device Structure Optimization -- 9.4 Summary and Outlook -- References -- Chapter 10 AC‐Driven Quantum Dot Light‐Emitting Diodes -- 10.1 Principle of Luminescence of DC and AC‐Driven QDLEDs -- 10.2 Mechanism of Double‐Emission Tandem Structure of AC QDLEDs -- 10.2.1 Field‐Generated AC QDLEDs -- 10.2.2 Half‐Field to Half‐Injection AC QDLEDs -- 10.2.3 AC/DC Dual Drive Mode QDLEDs -- 10.3 Optimization Strategies for AC QDLEDs -- 10.3.1 Optimization of the Field‐Induced AC QDLED -- 10.3.1.1 Dielectric Layer Optimization -- 10.3.1.2 Quantum Dot Layer Optimization -- 10.3.2 Optimization of Half‐Field‐Driven Half‐Injected AC QDLEDs -- 10.3.2.1 Charge Generation Layer Optimization -- 10.3.2.2 Tandem Structure -- 10.3.2.3 AC/DC Dual Drive Mode QDLED Optimization -- 10.3.3 Conclusion and Future Direction of AC‐QDLED -- References -- Chapter 11 Stability Study and Decay Mechanism of Quantum Dot Light‐Emitting Diodes -- 11.1 Quantum Dot Light‐Emitting Diode Stability Research Status -- 11.2 Factors Affecting the Stability of Quantum Dot Light‐Emitting Diodes -- 11.2.1 Quantum Dot Light‐Emitting Layer -- 11.2.2 Hole Transport Layer -- 11.2.3 Electronic Transport Layer -- 11.2.4 Other Functional Layers -- 11.3 Quantum Dot Light‐Emitting Diode Efficiency Decay Mechanism. 11.4 Aging Mechanisms of QDLEDs -- 11.4.1 Positive Aging -- 11.4.2 Negative Aging -- 11.4.3 Electron Transport Layer -- 11.4.4 Hole Transport Layer -- 11.4.5 QDs Layer -- 11.5 Characterization Technologies for QDLEDs -- 11.5.1 Transient Electroluminescence -- 11.5.2 Electro‐Absorption (EA) Spectroscopy -- 11.5.3 In‐Situ EL-PL Measurement -- 11.5.4 Differential Absorption Spectroscopy -- 11.5.5 Displacement Current Measurement DCM Technology -- 11.6 Outlook -- References -- Chapter 12 Electron/Hole Injection and Transport Materials in Quantum Dot Light‐Emitting Diodes -- 12.1 Introduction -- 12.2 Charge‐Transport Mechanisms -- 12.3 Electron Transport Materials (ETMs) for QDLED -- 12.3.1 Metal‐Doped ETMs -- 12.3.2 Metal Salt‐Doped ETMs -- 12.3.3 Design of Composite Materials ETMs -- 12.3.4 Polymer‐Modified ETMs -- 12.3.5 Inorganic Organic Hybrid ETMs -- 12.3.6 Double‐Stacked ETMs -- 12.4 Electron Injection Materials for QDLED -- 12.5 Hole Transport Materials for QDLED -- 12.5.1 Doping of HTMs -- 12.5.2 Compositions of HTMS -- 12.5.3 New HTM Materials for QDLED -- 12.6 Hole Injection Materials for QDLED -- 12.7 Summary and Outlook -- References -- Chapter 13 Quantum Dot Industrial Development and Patent Layout -- 13.1 Introduction -- 13.2 Patent Layout -- 13.2.1 Nanosys -- 13.2.2 SAMSUNG -- 13.2.3 Nanoco -- 13.2.4 Najing Tech -- 13.2.5 CSOT -- 13.2.6 BOE -- 13.2.7 TCL -- 13.3 Summary and Outlook -- References -- Chapter 14 Patterning Techniques for Quantum Dot Light‐Emitting Diodes (QDLED) -- 14.1 Introduction -- 14.2 Photolithography -- 14.3 Micro‐Contact Transfer -- 14.4 Inkjet Printing -- 14.5 Other Patterning Techniques -- 14.6 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911018944203321 |
Meng Hong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexible Electronic Packaging and Encapsulation Technology
| Flexible Electronic Packaging and Encapsulation Technology |
| Autore | Meng Hong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (379 pages) |
| Disciplina | 621.381046 |
| Altri autori (Persone) | HuangWei |
| Soggetto topico |
Flexible electronics
Electronic packaging |
| ISBN |
9783527845729
3527845720 9783527845705 3527845704 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Overview of Flexible Electronic Encapsulating Technology -- 1.1 Flexible Electronics Overview -- 1.2 Development of Flexible Electronic Encapsulating Technology -- 1.2.1 Flip Chip Process -- 1.2.2 Progress of CIF‐Based Flexible Electronic Encapsulating Technology -- 1.3 Encapsulating Technology of Several Important Flexible Electronic Devices -- 1.3.1 Organic Light‐Emitting Diode -- 1.3.2 Flexible Solar Cell Encapsulating -- 1.3.3 Flexible Amorphous Silicon Solar Cells -- 1.3.4 Flexible Perovskite Solar Cells -- 1.4 Flexible Electronic Encapsulating Materials -- 1.4.1 Selection Principle of Flexible Electronic Encapsulating Materials -- 1.4.2 Desirable Properties of Flexible Electronic Encapsulating Materials -- 1.5 Overview of the Development of Flexible Electronic Packaging at Home and Abroad -- References -- Chapter 2 Basic Concepts Related to Flexible Electronic Packaging -- 2.1 Composition of Flexible Electronic Packaging -- 2.1.1 Flexible Substrate -- 2.1.2 Electronic Components -- 2.1.3 Crosslinked Conductive Materials -- 2.1.4 Adhesive Layer -- 2.1.5 Coating Layer -- 2.2 Flexible Electronic Packaging Structure -- 2.2.1 Curved Structures of Hard Thin Films -- 2.2.2 Island‐Bridge Structure -- 2.2.3 Pre‐strained Super‐Soft Interconnect Structure -- 2.2.4 Open Grid Structure -- 2.3 Encapsulation Principle -- 2.3.1 Basic Principle of Penetration -- 2.3.2 Permeation Mechanism of Water Vapor and Gas -- 2.3.3 Barrier Performance Measurement -- 2.3.4 Thin‐Film Barrier Technology for Organic Devices -- 2.3.4.1 Single‐Layer Film Package -- 2.3.4.2 Multilayer Film Packaging -- 2.3.5 Film Encapsulation Mechanics -- 2.4 Packaging Technology -- 2.4.1 Local Multilayer Packaging -- 2.4.2 Multilayer Barrier Film Packaging -- 2.4.3 Online Thin‐Film Encapsulation.
2.4.4 Atomic Layer Deposition (ALD) Encapsulation -- 2.4.5 Inkjet Packaging -- 2.4.6 Flexible Glass Packaging -- 2.5 Packaging Stability -- 2.6 Encapsulated Products -- 2.7 Chapter Summary -- References -- Chapter 3 Flexible Substrates -- 3.1 Concept and Connotation of Flexible Substrates -- 3.2 Development History of Flexible Substrates -- 3.3 Flexible Substrate Materials -- 3.3.1 Polydimethylsiloxane -- 3.3.2 Polyvinyl Alcohol -- 3.3.3 Polycarbonate -- 3.3.4 Polyester -- 3.3.5 Polyimide -- 3.3.6 Polyurethane -- 3.3.7 Parylene -- 3.3.8 Liquid Crystal Polymer -- 3.3.9 Hydrogel -- 3.4 Molding Technology of Flexible Substrate -- 3.4.1 Coating Technology -- 3.4.1.1 Dip Coating Method -- 3.4.1.2 Air Knife Coating Method -- 3.4.1.3 Scraper Coating Method -- 3.4.1.4 Rotary Coating Method -- 3.4.2 Melt Extrusion Molding -- 3.4.3 Melt Extrusion Blow Molding -- 3.4.4 Solution Tape Casting -- 3.4.5 Bidirectional Drawing Molding -- 3.4.6 Chemical Vapor Deposition -- 3.5 Performance Evaluation of Flexible Substrates -- 3.5.1 Mechanical Flexibility -- 3.5.2 Ductility -- 3.5.3 Adhesive Property -- 3.5.4 Barrier Property -- 3.5.5 Electrical Property -- 3.5.6 Chemical Stability -- 3.5.7 Dimensional Stability -- 3.5.8 Surface Smoothness and Thickness Uniformity -- 3.5.9 Optical Clarity (Transmittance) -- 3.5.10 Biocompatibility -- 3.5.11 Bioabsorbability -- 3.6 Application of Flexible Substrates -- 3.6.1 Flexible Display Substrates -- 3.6.2 Flexible Electrode Substrates -- 3.6.3 Flexible Sensing Substrates -- 3.7 Development Trend of Flexible Substrates -- 3.7.1 Intelligent and Functional Flexible Substrates -- 3.7.2 Green Degradable Flexible Substrates -- 3.7.3 Optimization of Interface Compatibility of Flexible Substrates -- References -- Chapter 4 Test Methods -- 4.1 Sealing Test -- 4.1.1 Direct Diffusion Method -- 4.1.1.1 Weight Cup Test. 4.1.1.2 Differential Pressure Method -- 4.1.1.3 Balancing Method -- 4.1.1.4 Tunable Diode Laser Absorption Spectrometry -- 4.1.1.5 Isotope Labeling Mass Spectrometry -- 4.1.2 Indirect Optical Method -- 4.1.3 Indirect Electrical Method -- 4.1.3.1 Calcium Electrical Test -- 4.1.3.2 Dielectric Measurement Method -- 4.1.4 Indirect Electrochemical Method -- 4.1.4.1 Electrochemical Impedance Spectroscopy (EIS) -- 4.1.4.2 Leakage Current Monitoring Method (LCM) -- 4.1.4.3 Linear Scanning Voltammetry (LSV) -- 4.1.5 Indirect Electromechanical Method -- 4.2 Bending Test -- 4.2.1 Static Bending and Dynamic Bending -- 4.2.2 Three‐Point Bending and Four‐Point Bending -- 4.2.3 Push Bending and Roll Bending -- 4.2.3.1 Push Bending -- 4.2.3.2 Rolling Bend -- 4.3 Mechanical Performance Testing -- 4.4 Stability Testing -- References -- Chapter 5 Flexible Electronic Encapsulation -- 5.1 Inorganic Encapsulating Material -- 5.1.1 Metal Encapsulating Material -- 5.1.1.1 Copper, Aluminum -- 5.1.1.2 Favorable Alloys -- 5.1.1.3 Copper-Tungsten Alloy (Cu-W) -- 5.1.2 Ceramic Encapsulating Material -- 5.1.2.1 Al2O3 Ceramic Encapsulation Material -- 5.1.2.2 AlN Ceramic Encapsulation Materials -- 5.1.2.3 BeO Ceramic Encapsulation Material -- 5.1.2.4 BN Ceramic Encapsulation Materials -- 5.1.3 New Trend in Inorganic Encapsulating Materials Combined with Flexible Electronic Technology -- 5.2 Organic Encapsulating Material -- 5.2.1 Polymer Encapsulating Material -- 5.2.1.1 Epoxy Resins -- 5.2.1.2 Polyimide Resins -- 5.2.1.3 Organic Silicon -- 5.2.1.4 Bismaleimide -- 5.2.1.5 Bismaleimide Triazine Resin -- 5.2.2 Development Trend of Organic Encapsulating Materials in Flexible Electronic Devices -- 5.3 Organic-Inorganic Hybrid Encapsulating Material -- 5.3.1 Application of Organic-Inorganic Hybrid Materials in Flexible Electronics -- 5.3.1.1 Strain and Pressure Sensors. 5.3.1.2 Temperature Sensor -- 5.3.1.3 Humidity Sensor -- 5.3.1.4 Optical Sensors -- 5.3.1.5 Other Types of Sensing Devices -- 5.3.2 Development Trends of Organic-Inorganic Hybrid Materials -- References -- Chapter 6 Development of Flexible Electronics Packaging Technology -- 6.1 Flexible Electronics Packaging -- 6.1.1 Single‐Layer Thin‐Film Packaging -- 6.1.2 Multi‐Layer Thin‐Film Packaging -- 6.1.2.1 Barix Multilayer Thin‐Film Packaging -- 6.1.2.2 Other Multilayer Thin‐Film Packaging -- 6.2 Thin‐Film Packaging Technology -- 6.2.1 PECVD Atomic Layer Deposition Packaging Technology -- 6.2.1.1 Introduction to PECVD Technology -- 6.2.1.2 Development of PECVD Technology -- 6.2.2 ALD Atomic Layer Deposition Packaging Technology -- 6.2.2.1 Introduction to ALD Technology -- 6.2.2.2 Development of ALD Technology -- 6.2.3 Inkjet Packaging Technology -- 6.2.3.1 Introduction to Inkjet Encapsulation Technology -- 6.2.3.2 Continuous Inkjet Printing -- 6.2.3.3 Drop‐on‐Demand Inkjet Printing -- 6.2.3.4 Development of Inkjet Printing Technology -- References -- Chapter 7 Application of Flexible Electronics Packaging -- 7.1 Industry Chain Analysis of Flexible Electronics Packaging -- 7.1.1 Upstream, Midstream, and Downstream of the Flexible Electronics Industry Chain -- 7.1.2 Overview of the Development of Flexible Packaging Materials -- 7.2 Packaging Applications of Flexible OLED Devices -- 7.2.1 Stability Issues of Flexible OLED Devices -- 7.2.2 Flexible OLED Packaging Technology -- 7.2.2.1 Lack of Breakthrough in Encapsulating Technology -- 7.2.2.2 Low Yield Rate -- 7.3 Packaging Applications for Flexible Solar Cells -- 7.3.1 Inorganic Flexible Solar Cells -- 7.3.2 Organic Flexible Solar Cells -- 7.3.3 Dye‐Sensitized Solar Cells -- 7.3.3.1 Structure of Dye‐Sensitized Solar Cells -- 7.3.3.2 Light Anode -- 7.3.3.3 Counter Electrode. 7.4 Packaging Applications for Flexible Electronic Devices -- 7.4.1 Basic Structure of Flexible Electronic Devices -- 7.4.2 Application of Flexible Electronic Devices -- 7.4.2.1 Optoelectronics -- 7.4.2.2 Robot -- 7.4.2.3 Biomedical -- 7.4.2.4 Energy Equipment -- 7.5 Packaging Applications for Flexible Electronics Sensors -- 7.5.1 Common Materials of Flexible Sensors -- 7.5.1.1 Flexible Substrate -- 7.5.1.2 Metal Materials -- 7.5.1.3 Inorganic Semiconductor Materials -- 7.5.1.4 Organic Materials -- 7.5.1.5 Carbon Materials -- 7.5.2 Flexible Gas Sensors -- 7.5.3 Flexible Pressure Sensors -- 7.5.4 Flexible Humidity Sensor -- 7.5.5 Normal Sensors Compare with Flexible Sensors -- References -- Chapter 8 Testing Standards -- 8.1 Terminology and Alphabetic Symbols -- 8.1.1 Scope -- 8.1.2 Terms and Definitions -- 8.1.2.1 Terminology Classification -- 8.1.2.2 General Terms -- 8.1.2.3 Physical Characteristics Related Terms -- 8.1.2.4 Terms Related to Construction Elements -- 8.1.2.5 Symbols Related to Performances and Specifications -- 8.1.2.6 Terms Related to the Production Process -- 8.1.3 Alphabetic Symbols (Quantity Symbols/Unit Symbols) -- 8.1.3.1 Classification -- 8.1.3.2 Symbols -- 8.2 Mechanical Test Method (Deformation Test) -- 8.2.1 Cyclic Bending Test -- 8.2.1.1 Purpose -- 8.2.1.2 Testing Device -- 8.2.1.3 Test Procedure -- 8.2.1.4 Test Conditions and Reports -- 8.2.2 Static Bending Test -- 8.2.2.1 Purpose -- 8.2.2.2 Testing Device -- 8.2.2.3 Test Steps -- 8.2.2.4 Test Conditions and Reports -- 8.2.3 Combined Bending Test -- 8.2.3.1 Purpose -- 8.2.3.2 Testing Device -- 8.2.3.3 Test Procedure -- 8.2.3.4 Test Conditions and Reports -- 8.2.4 Rolling Test -- 8.2.4.1 Purpose -- 8.2.4.2 Testing Device -- 8.2.4.3 Test Procedure -- 8.2.4.4 Test Conditions and Reports -- 8.2.5 Static Rolling Test -- 8.2.5.1 Purpose -- 8.2.5.2 Testing Device. 8.2.5.3 Test Procedure. |
| Record Nr. | UNINA-9911020272603321 |
Meng Hong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Perovskite Light Emitting Diodes : Materials and Devices
| Perovskite Light Emitting Diodes : Materials and Devices |
| Autore | Meng Hong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (371 pages) |
| ISBN |
3-527-84495-3
3-527-84493-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Structure and Physical Properties of Metal Halide Perovskites -- 1.1 Crystal Structure of Perovskite Materials -- 1.2 Exciton Effects in Perovskite Materials -- 1.2.1 Definition of an Exciton -- 1.2.2 Self‐Trapping Excitons in Perovskite Materials -- 1.3 Size Effect of Perovskite Materials -- 1.4 Luminescence Properties of Perovskite Materials -- 1.4.1 Photon Generation in Perovskite Materials -- 1.4.2 Photophysical Processes and Efficiency Calculations of Perovskite Luminescence -- 1.4.3 Non‐radiative Combination Mechanisms at Surfaces and Interfaces -- 1.5 Factors Influencing the Efficiency of Perovskite Light Emitting Diodes -- 1.5.1 Device Structure of the Perovskite Light Emitting Diode -- 1.5.2 Physical Parameters of Perovskite Light‐Emitting Diodes -- 1.5.3 Device Performance Development of Perovskite Light‐Emitting Diodes -- 1.6 Summary -- References -- Chapter 2 Synthesis and Preparation of Perovskite Materials -- 2.1 Introduction -- 2.2 Perovskite Materials Structures -- 2.2.1 3D Halide Perovskite Materials for Light‐Emitting Diodes -- 2.2.2 Layered Halide Perovskite Materials -- 2.2.3 Halide Perovskite Quantum Dots/Nanocrystals -- 2.2.4 Commercial Prospects of Perovskite Materials -- 2.3 Preparation of Perovskite Nanomaterials -- 2.3.1 Mechanochemical Method -- 2.3.2 Ultrasonic Method -- 2.3.3 Microwave Method -- 2.3.4 Solvent Heat Method -- 2.3.5 Thermal Injection Method -- 2.3.6 Ligand‐Assisted Reprecipitation -- 2.3.7 Ion Exchange Method -- 2.3.8 Laser Etching Method -- 2.4 Processing Technology for Large‐Area Perovskite Films -- 2.4.1 Spin Coating Method -- 2.4.2 Vacuum Thermal Vapor Deposition Method -- 2.4.3 Printing Method -- 2.4.4 Vapor ‐Phase Deposition Method -- 2.4.5 Spraying Method -- 2.4.6 Template Method -- 2.4.7 Non‐Template Method.
2.5 Conclusion and Outlook -- References -- Chapter 3 Near‐Infrared Perovskite Light‐Emitting Devices -- 3.1 Introduction -- 3.2 Progress in Near‐Infrared Perovskite Luminescence Materials -- 3.3 Near‐Infrared Perovskite Luminescent Materials -- 3.3.1 Methylamine Lead Iodide (MAPbI3) -- 3.3.2 NIR‐Emitting Materials Based on Perovskite -- 3.4 Strategies to Improve the Performance of NIR Perovskite Devices -- 3.4.1 NIR Perovskite Material Optimization -- 3.4.1.1 Near‐Infrared Wavelength Adjustment -- 3.4.1.2 Multiple Quantum Well Structure -- 3.4.1.3 Molecular Passivation -- 3.4.2 Device Structure Optimization -- 3.5 Conclusion and Outlook -- References -- Chapter 4 Perovskite Red Light‐Emitting Materials and Devices -- 4.1 The Development History of Perovskite Red Light‐Emitting Diodes -- 4.2 Red Emission Perovskite Materials -- 4.2.1 Typical Red Emission Perovskite Material CsPbI3 -- 4.2.2 Other Red Emission Perovskite Materials -- 4.2.2.1 Other ABX3 and Hybridized ABX3‐Type Materials -- 4.2.2.2 Double Perovskite -- 4.2.3 Red Emission Perovskite Synthesis -- 4.2.3.1 Synthesis of Nanocrystals -- 4.2.3.2 Synthesis of Quasi‐Two‐Dimensional Films -- 4.2.4 Optimization Strategies of Red Perovskite Materials -- 4.2.4.1 Doping -- 4.2.4.2 Surface Passivation -- 4.2.4.3 Multiple Quantum Well Structure -- 4.2.4.4 Ligand Engineering -- 4.2.4.5 Additive Engineering -- 4.3 Perovskite Red Light‐Emitting Diodes -- 4.3.1 Device Structure and Common Materials for Each Functional Layer -- 4.3.2 Device Optimization Strategy -- 4.3.2.1 Energy Level Regulation -- 4.3.2.2 Light Extraction Technology -- 4.3.2.3 Interface Treatment Method -- 4.4 Conclusion and Outlook -- References -- Chapter 5 Perovskite Green Light‐Emitting Materials and Devices -- 5.1 History of Green Perovskite Light‐Emitting Diodes -- 5.2 Green Light Perovskite Materials. 5.2.1 Pure Inorganic Perovskite Materials -- 5.2.2 Organic-Inorganic Hybrid Perovskite Materials -- 5.2.3 Synthesis of Perovskite Green Light‐Emitting Materials -- 5.3 Development of Green Perovskite Light‐Emitting Diodes -- 5.3.1 Structure of Green Perovskite Light‐Emitting Diode Devices -- 5.3.2 Quantum Dot Green Perovskite Light‐Emitting Diodes -- 5.3.3 Nanocrystalline Green Perovskite Light‐Emitting Diodes -- 5.3.4 Quasi‐2D Ruddlesden-Popper Green Perovskite Light‐Emitting Diodes -- 5.4 Factors Affecting the External Quantum Efficiency of Perovskite Green Light‐Emitting Diodes -- 5.4.1 Aspects of Materials -- 5.4.2 Aspects of the Device Structure -- 5.5 Strategies for Improving the External Quantum Efficiency of Green Perovskite Light‐Emitting Diodes -- 5.5.1 Ligand Engineering -- 5.5.2 Crystal Engineering -- 5.5.3 Surface Engineering -- 5.5.4 Passivation Engineering -- 5.5.5 Optimization of the Device Structure -- 5.6 Other Properties of Green Perovskite Light‐Emitting Diodes -- 5.7 Conclusion and Outlook -- References -- Chapter 6 Blue Perovskite Light‐emitting Materials and Devices -- 6.1 Technology Development of Blue Perovskite Light‐emitting Diodes -- 6.2 Blueshift Strategy -- 6.3 Perovskite Blue Light‐emitting Materials -- 6.3.1 Perovskite Blue Light‐emitting Materials with a Quasi‐two‐dimensional Structure -- 6.3.1.1 Development of New Bulky Cations -- 6.3.1.2 Mixing of Bulky Cations -- 6.3.1.3 Cationic Doping -- 6.3.2 Blue Light Perovskite Nanocrystals or Quantum Dot Materials -- 6.4 Synthesis and Use of New Long‐Chain Ligands -- 6.5 Surface Modification of Nanostructures -- 6.6 Optimization of the Internal Structure -- 6.7 Process for the Preparation of Blue Light‐Emitting Layers -- 6.7.1 Preparation of Three‐Dimensional and Quasi‐Two‐Dimensional Perovskite Films -- 6.7.2 Preparation of Nano‐Microcrystalline Precursors. 6.8 Device Performance Optimization and Interface Engineering -- 6.8.1 Passivation of Film Defects -- 6.8.2 Selection and Optimization of Hole and Electron Injection Layers -- 6.8.3 Interface Engineering -- 6.9 Optimization of Device Stability -- 6.9.1 Lifetime of Perovskite Blue Light‐emitting Diodes -- 6.9.2 Optimization of Efficiency Stability in Perovskite Light‐emitting Diodes -- 6.9.3 Light Color Stability Optimization -- 6.10 Conclusion and Outlook -- References -- Chapter 7 Effect of Metal Ion Doping on Perovskite Light‐Emitting Materials -- 7.1 Metal Ion Doping Effect -- 7.1.1 Effect of A‐site Metal Ion Doping on Perovskite Materials -- 7.1.2 Effect of B‐site Metal Ion Doping on Perovskite Materials -- 7.2 Metal Ion‐Doped Materials and Devices -- 7.2.1 Near‐infrared Optical Perovskite Materials -- 7.2.2 Red Light Perovskite Materials -- 7.2.3 Green Light Perovskite Materials -- 7.2.4 Blue‐Light Perovskite Materials -- 7.3 Metal Ion Doping Methods -- 7.3.1 Post‐synthesis Ion Exchange Methods -- 7.3.2 Colloidal Synthesis Methods -- 7.3.3 The Thermal Injection Methods -- 7.3.4 High Temperature Solid‐state Synthesis Methods -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Non‐lead Metal Halide Perovskite Materials -- 8.1 Development History of Non‐lead Blue Perovskite Materials -- 8.2 Preparation of Non‐lead Metal Halide Materials -- 8.3 Types of Non‐lead Metal Halide Materials -- 8.3.1 Tin‐Based Perovskites Materials -- 8.3.2 Bismuth‐Based Metal Halide Materials -- 8.3.3 Antimony‐Based Metal Halide Materials -- 8.3.4 Copper‐Based Metal Halide Materials -- 8.3.5 Europium‐Based Metal Halide Materials -- 8.3.6 Bimetallic Cationic Halide Perovskites Materials -- 8.4 Methods for Optimizing the Fluorescence Quantum Efficiency of Non‐lead Metal Halide Materials -- 8.4.1 Surface Passivation. 8.4.2 Selection of Solvents and Undesirable Solvents -- 8.4.3 Doping -- 8.5 Conclusion and Outlook -- References -- Chapter 9 Perovskite White Light‐emitting Materials and Devices -- 9.1 Background of WPeLED -- 9.2 Down‐conversion Method -- 9.3 Full Electroluminescent PeLEDs -- 9.3.1 Yellow Perovskite Light‐emitting Diodes -- 9.3.1.1 Zero‐dimensional Sn‐doped Halide Perovskites -- 9.3.1.2 2D (C18H35NH3)2SnBr4 Perovskite -- 9.3.1.3 Colloidal Undoped and Double‐doped Cs2AgInCl6 Nanocrystals -- 9.3.1.4 Introducing Separated Emitting Centers -- 9.3.2 Progress in the Research of Sky‐Blue Perovskite Light‐emitting Diodes -- 9.4 Single White Light Perovskite Materials and Self‐trapped Excitons -- 9.4.1 Single White Light Perovskite Materials -- 9.4.1.1 (110) Perovskite with Corrugated Inorganic Layers -- 9.4.1.2 (001) Perovskite with Flat Inorganic Layers -- 9.4.2 Self‐trapped Excitons -- 9.5 Perovskite-Organic Coupling White PeLEDs -- 9.6 Others -- 9.7 Conclusion and Outlook -- References -- Chapter 10 Electron and Hole Transport Materials -- 10.1 Background of Charge Transport Materials -- 10.1.1 Charge Transport of Metal Halide Perovskite Materials -- 10.1.2 Charge Transport Materials in PeLED -- 10.2 Electron Transport Materials in PeLEDs -- 10.2.1 Inorganic Oxides Electron Transport Materials -- 10.2.2 Inorganically Doped Electron Transport Materials -- 10.2.3 Organic Monolayer Electron Transport Materials -- 10.2.4 Organic Multilayer Electron Transport Materials -- 10.2.5 Doped Organic Electron Transport Materials -- 10.2.6 Organic-Inorganic Hybrid Electron Transport Materials -- 10.3 Hole Transport Materials in PeLEDs -- 10.4 Progress in the Study of Hole Transport Layers and Hole Injection Layers in Perovskite Light Emitting Diodes -- 10.4.1 PVK‐Doped TPD, TCTA -- 10.4.2 PEDOT:PSS After Methanol Treatment -- 10.4.3 TB(MA) Instead of PEDOT:PSS. 10.4.4 PSS‐Doped Na. |
| Record Nr. | UNINA-9910830666103321 |
Meng Hong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Perovskite Light Emitting Diodes : Materials and Devices
| Perovskite Light Emitting Diodes : Materials and Devices |
| Autore | Meng Hong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (371 pages) |
| Soggetto topico |
Light emitting diodes
Optoelectronic devices |
| ISBN |
9783527844951
3527844953 9783527844937 3527844937 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Structure and Physical Properties of Metal Halide Perovskites -- 1.1 Crystal Structure of Perovskite Materials -- 1.2 Exciton Effects in Perovskite Materials -- 1.2.1 Definition of an Exciton -- 1.2.2 Self‐Trapping Excitons in Perovskite Materials -- 1.3 Size Effect of Perovskite Materials -- 1.4 Luminescence Properties of Perovskite Materials -- 1.4.1 Photon Generation in Perovskite Materials -- 1.4.2 Photophysical Processes and Efficiency Calculations of Perovskite Luminescence -- 1.4.3 Non‐radiative Combination Mechanisms at Surfaces and Interfaces -- 1.5 Factors Influencing the Efficiency of Perovskite Light Emitting Diodes -- 1.5.1 Device Structure of the Perovskite Light Emitting Diode -- 1.5.2 Physical Parameters of Perovskite Light‐Emitting Diodes -- 1.5.3 Device Performance Development of Perovskite Light‐Emitting Diodes -- 1.6 Summary -- References -- Chapter 2 Synthesis and Preparation of Perovskite Materials -- 2.1 Introduction -- 2.2 Perovskite Materials Structures -- 2.2.1 3D Halide Perovskite Materials for Light‐Emitting Diodes -- 2.2.2 Layered Halide Perovskite Materials -- 2.2.3 Halide Perovskite Quantum Dots/Nanocrystals -- 2.2.4 Commercial Prospects of Perovskite Materials -- 2.3 Preparation of Perovskite Nanomaterials -- 2.3.1 Mechanochemical Method -- 2.3.2 Ultrasonic Method -- 2.3.3 Microwave Method -- 2.3.4 Solvent Heat Method -- 2.3.5 Thermal Injection Method -- 2.3.6 Ligand‐Assisted Reprecipitation -- 2.3.7 Ion Exchange Method -- 2.3.8 Laser Etching Method -- 2.4 Processing Technology for Large‐Area Perovskite Films -- 2.4.1 Spin Coating Method -- 2.4.2 Vacuum Thermal Vapor Deposition Method -- 2.4.3 Printing Method -- 2.4.4 Vapor ‐Phase Deposition Method -- 2.4.5 Spraying Method -- 2.4.6 Template Method -- 2.4.7 Non‐Template Method.
2.5 Conclusion and Outlook -- References -- Chapter 3 Near‐Infrared Perovskite Light‐Emitting Devices -- 3.1 Introduction -- 3.2 Progress in Near‐Infrared Perovskite Luminescence Materials -- 3.3 Near‐Infrared Perovskite Luminescent Materials -- 3.3.1 Methylamine Lead Iodide (MAPbI3) -- 3.3.2 NIR‐Emitting Materials Based on Perovskite -- 3.4 Strategies to Improve the Performance of NIR Perovskite Devices -- 3.4.1 NIR Perovskite Material Optimization -- 3.4.1.1 Near‐Infrared Wavelength Adjustment -- 3.4.1.2 Multiple Quantum Well Structure -- 3.4.1.3 Molecular Passivation -- 3.4.2 Device Structure Optimization -- 3.5 Conclusion and Outlook -- References -- Chapter 4 Perovskite Red Light‐Emitting Materials and Devices -- 4.1 The Development History of Perovskite Red Light‐Emitting Diodes -- 4.2 Red Emission Perovskite Materials -- 4.2.1 Typical Red Emission Perovskite Material CsPbI3 -- 4.2.2 Other Red Emission Perovskite Materials -- 4.2.2.1 Other ABX3 and Hybridized ABX3‐Type Materials -- 4.2.2.2 Double Perovskite -- 4.2.3 Red Emission Perovskite Synthesis -- 4.2.3.1 Synthesis of Nanocrystals -- 4.2.3.2 Synthesis of Quasi‐Two‐Dimensional Films -- 4.2.4 Optimization Strategies of Red Perovskite Materials -- 4.2.4.1 Doping -- 4.2.4.2 Surface Passivation -- 4.2.4.3 Multiple Quantum Well Structure -- 4.2.4.4 Ligand Engineering -- 4.2.4.5 Additive Engineering -- 4.3 Perovskite Red Light‐Emitting Diodes -- 4.3.1 Device Structure and Common Materials for Each Functional Layer -- 4.3.2 Device Optimization Strategy -- 4.3.2.1 Energy Level Regulation -- 4.3.2.2 Light Extraction Technology -- 4.3.2.3 Interface Treatment Method -- 4.4 Conclusion and Outlook -- References -- Chapter 5 Perovskite Green Light‐Emitting Materials and Devices -- 5.1 History of Green Perovskite Light‐Emitting Diodes -- 5.2 Green Light Perovskite Materials. 5.2.1 Pure Inorganic Perovskite Materials -- 5.2.2 Organic-Inorganic Hybrid Perovskite Materials -- 5.2.3 Synthesis of Perovskite Green Light‐Emitting Materials -- 5.3 Development of Green Perovskite Light‐Emitting Diodes -- 5.3.1 Structure of Green Perovskite Light‐Emitting Diode Devices -- 5.3.2 Quantum Dot Green Perovskite Light‐Emitting Diodes -- 5.3.3 Nanocrystalline Green Perovskite Light‐Emitting Diodes -- 5.3.4 Quasi‐2D Ruddlesden-Popper Green Perovskite Light‐Emitting Diodes -- 5.4 Factors Affecting the External Quantum Efficiency of Perovskite Green Light‐Emitting Diodes -- 5.4.1 Aspects of Materials -- 5.4.2 Aspects of the Device Structure -- 5.5 Strategies for Improving the External Quantum Efficiency of Green Perovskite Light‐Emitting Diodes -- 5.5.1 Ligand Engineering -- 5.5.2 Crystal Engineering -- 5.5.3 Surface Engineering -- 5.5.4 Passivation Engineering -- 5.5.5 Optimization of the Device Structure -- 5.6 Other Properties of Green Perovskite Light‐Emitting Diodes -- 5.7 Conclusion and Outlook -- References -- Chapter 6 Blue Perovskite Light‐emitting Materials and Devices -- 6.1 Technology Development of Blue Perovskite Light‐emitting Diodes -- 6.2 Blueshift Strategy -- 6.3 Perovskite Blue Light‐emitting Materials -- 6.3.1 Perovskite Blue Light‐emitting Materials with a Quasi‐two‐dimensional Structure -- 6.3.1.1 Development of New Bulky Cations -- 6.3.1.2 Mixing of Bulky Cations -- 6.3.1.3 Cationic Doping -- 6.3.2 Blue Light Perovskite Nanocrystals or Quantum Dot Materials -- 6.4 Synthesis and Use of New Long‐Chain Ligands -- 6.5 Surface Modification of Nanostructures -- 6.6 Optimization of the Internal Structure -- 6.7 Process for the Preparation of Blue Light‐Emitting Layers -- 6.7.1 Preparation of Three‐Dimensional and Quasi‐Two‐Dimensional Perovskite Films -- 6.7.2 Preparation of Nano‐Microcrystalline Precursors. 6.8 Device Performance Optimization and Interface Engineering -- 6.8.1 Passivation of Film Defects -- 6.8.2 Selection and Optimization of Hole and Electron Injection Layers -- 6.8.3 Interface Engineering -- 6.9 Optimization of Device Stability -- 6.9.1 Lifetime of Perovskite Blue Light‐emitting Diodes -- 6.9.2 Optimization of Efficiency Stability in Perovskite Light‐emitting Diodes -- 6.9.3 Light Color Stability Optimization -- 6.10 Conclusion and Outlook -- References -- Chapter 7 Effect of Metal Ion Doping on Perovskite Light‐Emitting Materials -- 7.1 Metal Ion Doping Effect -- 7.1.1 Effect of A‐site Metal Ion Doping on Perovskite Materials -- 7.1.2 Effect of B‐site Metal Ion Doping on Perovskite Materials -- 7.2 Metal Ion‐Doped Materials and Devices -- 7.2.1 Near‐infrared Optical Perovskite Materials -- 7.2.2 Red Light Perovskite Materials -- 7.2.3 Green Light Perovskite Materials -- 7.2.4 Blue‐Light Perovskite Materials -- 7.3 Metal Ion Doping Methods -- 7.3.1 Post‐synthesis Ion Exchange Methods -- 7.3.2 Colloidal Synthesis Methods -- 7.3.3 The Thermal Injection Methods -- 7.3.4 High Temperature Solid‐state Synthesis Methods -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Non‐lead Metal Halide Perovskite Materials -- 8.1 Development History of Non‐lead Blue Perovskite Materials -- 8.2 Preparation of Non‐lead Metal Halide Materials -- 8.3 Types of Non‐lead Metal Halide Materials -- 8.3.1 Tin‐Based Perovskites Materials -- 8.3.2 Bismuth‐Based Metal Halide Materials -- 8.3.3 Antimony‐Based Metal Halide Materials -- 8.3.4 Copper‐Based Metal Halide Materials -- 8.3.5 Europium‐Based Metal Halide Materials -- 8.3.6 Bimetallic Cationic Halide Perovskites Materials -- 8.4 Methods for Optimizing the Fluorescence Quantum Efficiency of Non‐lead Metal Halide Materials -- 8.4.1 Surface Passivation. 8.4.2 Selection of Solvents and Undesirable Solvents -- 8.4.3 Doping -- 8.5 Conclusion and Outlook -- References -- Chapter 9 Perovskite White Light‐emitting Materials and Devices -- 9.1 Background of WPeLED -- 9.2 Down‐conversion Method -- 9.3 Full Electroluminescent PeLEDs -- 9.3.1 Yellow Perovskite Light‐emitting Diodes -- 9.3.1.1 Zero‐dimensional Sn‐doped Halide Perovskites -- 9.3.1.2 2D (C18H35NH3)2SnBr4 Perovskite -- 9.3.1.3 Colloidal Undoped and Double‐doped Cs2AgInCl6 Nanocrystals -- 9.3.1.4 Introducing Separated Emitting Centers -- 9.3.2 Progress in the Research of Sky‐Blue Perovskite Light‐emitting Diodes -- 9.4 Single White Light Perovskite Materials and Self‐trapped Excitons -- 9.4.1 Single White Light Perovskite Materials -- 9.4.1.1 (110) Perovskite with Corrugated Inorganic Layers -- 9.4.1.2 (001) Perovskite with Flat Inorganic Layers -- 9.4.2 Self‐trapped Excitons -- 9.5 Perovskite-Organic Coupling White PeLEDs -- 9.6 Others -- 9.7 Conclusion and Outlook -- References -- Chapter 10 Electron and Hole Transport Materials -- 10.1 Background of Charge Transport Materials -- 10.1.1 Charge Transport of Metal Halide Perovskite Materials -- 10.1.2 Charge Transport Materials in PeLED -- 10.2 Electron Transport Materials in PeLEDs -- 10.2.1 Inorganic Oxides Electron Transport Materials -- 10.2.2 Inorganically Doped Electron Transport Materials -- 10.2.3 Organic Monolayer Electron Transport Materials -- 10.2.4 Organic Multilayer Electron Transport Materials -- 10.2.5 Doped Organic Electron Transport Materials -- 10.2.6 Organic-Inorganic Hybrid Electron Transport Materials -- 10.3 Hole Transport Materials in PeLEDs -- 10.4 Progress in the Study of Hole Transport Layers and Hole Injection Layers in Perovskite Light Emitting Diodes -- 10.4.1 PVK‐Doped TPD, TCTA -- 10.4.2 PEDOT:PSS After Methanol Treatment -- 10.4.3 TB(MA) Instead of PEDOT:PSS. 10.4.4 PSS‐Doped Na. |
| Record Nr. | UNINA-9911019854103321 |
Meng Hong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||