top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to gravitational lensing : with Python examples / / Massimo Meneghetti
Introduction to gravitational lensing : with Python examples / / Massimo Meneghetti
Autore Meneghetti Massimo <1974->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (417 pages)
Disciplina 523.112
Collana Lecture Notes in Physics
Soggetto topico Gravitational lenses
Astrophysics
Galaxies
ISBN 3-030-73582-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgments -- Contents -- About the Author -- Part I Generalities -- 1 A Brief History of Gravitational Lensing -- 1.1 Corpuscular Theory of Light -- 1.2 The Einstein Revolution -- 1.3 How to Prove the Deflection of Light? -- 1.4 The Eddington Expeditions -- 1.5 Following Intuitions -- 1.6 First Observational Discoveries -- 1.7 The First Microlensing Observations -- 1.8 The Detection of Weak Lensing -- References -- 2 Light Deflection -- 2.1 Deflection of a Light Corpuscle -- 2.2 Deflection of Light According to General Relativity -- 2.2.1 Fermat Principle and Light Deflection -- Deflection in the Perturbed Minkowski's Space-Time -- Effective Refractive Index -- Deflection Angle -- Born Approximation -- 2.2.2 Deflection of Light in the Strong Field Limit -- 2.3 Deflection by an Ensemble of Point Masses -- 2.4 Deflection by an Extended Mass Distribution -- 2.5 Python Applications -- 2.5.1 Light Deflection by a Black-Hole -- 2.5.2 Light Deflection by an Extended Mass Distribution -- References -- 3 The General Lens -- 3.1 Lens Equation -- 3.2 Lensing Potential -- 3.3 First Order Lens Mapping -- 3.3.1 First Order Lensing of a Circular Source -- 3.4 Magnification -- 3.5 Lensing to the Second Order -- 3.5.1 Complex Notation -- 3.6 Time Delay Surface -- 3.6.1 Gravitational and Geometrical Time Delays -- 3.6.2 Multiple Images and Magnification -- 3.6.3 Examples -- Axially Symmetric Lenses: One-Dimensional Case -- Axially Symmetric Lenses: Two-Dimensional Case -- Elliptical Potentials -- 3.6.4 General Considerations -- 3.7 Python Applications -- 3.7.1 Implementing a Ray-Tracing Algorithm -- 3.7.2 Derivation of the Lensing Potential -- 3.7.3 Lensing Maps -- 3.7.4 Critical Lines and Caustics -- 3.7.5 Shear and Flexion -- 3.7.6 Full Ray-Tracing Simulation and Time Delay Surface -- 3.7.7 Lensing by Numerically Simulated Mass Distributions.
References -- Part II Applications -- 4 Microlenses -- 4.1 The Point-Mass Lens -- 4.1.1 Deflection Angle and Lensing Potential -- 4.1.2 Lens Equation -- 4.1.3 Multiple Images -- 4.1.4 Critical Lines, Caustics, and Magnification -- 4.1.5 Source Magnification -- 4.1.6 Microlensing Cross Section -- 4.2 Microlensing Light-Curve -- 4.2.1 Light-Curve Fitting -- 4.3 Microlensing Parallax -- 4.3.1 Orbital Parallax -- 4.3.2 Satellite Parallax -- 4.3.3 Terrestrial Parallax -- 4.4 Astrometric Microlensing -- 4.5 Photometric Microlensing: Optical Depth and Event Rates -- 4.5.1 Optical Depth -- Optical Depth of an Exponential Disk -- 4.5.2 Event Rate -- 4.6 Results from MACHO Searches -- 4.7 Multiple Point Masses -- 4.7.1 Generalities -- Deflection Angle -- Lens Equation -- Critical Lines -- 4.7.2 Binary Lenses -- Lens Equation -- Critical Lines and Caustics -- Multiple Images -- Image Magnifications and Light-Curves -- 4.8 Planetary Microlensing -- 4.8.1 Perturbations of the Central Caustic -- 4.8.2 Perturbations of the Planetary Caustic -- 4.8.3 Perturbations of the Resonant Caustic -- 4.8.4 Perturbations of the Inner and Outer Images -- 4.8.5 Analysis of the Light-Curve in a Planetary Caustic Crossing Event -- 4.8.6 Planetary Microlensing Detections -- 4.9 Python Applications -- 4.9.1 Standard Microlensing Light-Curve -- 4.9.2 Fitting the Standard Light-Curve -- 4.9.3 Distribution of Microlensing Event Timescale -- 4.9.4 Astrometric Microlensing Effect -- 4.9.5 Critical Lines and Caustics of a Binary Lens -- 4.9.6 Solving the Lens Equation of the Binary Lens -- 4.9.7 Light-Curve in a Binary Microlensing Event -- References -- 5 Extended Lenses -- 5.1 Circular, Axially Symmetric Lenses -- Critical Lines and Caustics -- Einstein Radius -- Tangential and Radial Magnification of the Images -- 5.2 Power-Law Lens -- 5.2.1 Lenses with 1< -- n< -- 2.
Critical Lines and Caustics -- Multiple Images -- Image Magnification -- 5.2.2 Lenses with n > -- 2 -- 5.2.3 Singular Isothermal Sphere -- 5.3 Softened (Non-singular) Isothermal Lenses -- 5.4 Elliptical Lenses -- 5.4.1 Singular Isothermal Ellipsoid -- Convergence -- Lensing Potential -- Deflection Angle -- Shear -- Critical Lines -- Caustic and Cut -- Multiple Images -- Distortion and Parity of the Images -- 5.4.2 Softened (Non-singular) Elliptical Models -- 5.4.3 Pseudo-Elliptical Models -- 5.5 Other Profiles -- 5.5.1 The Navarro-Frenk-White Model -- 5.5.2 The Dual Pseudo-Isothermal Mass Distribution -- 5.6 External Perturbations -- 5.7 Multiple Mass Components -- 5.8 Time Delays -- 5.9 Mass-Sheet Degeneracy -- 5.10 Multiple Lens Planes -- 5.11 Python Applications -- 5.11.1 Numerical Solution of the Lens Equation -- Multiple Images by a SIE Lens -- 5.11.2 Triangle Mapping -- 5.11.3 SIS Lens in an External Shear -- 5.11.4 Multiple Lens Planes -- References -- 6 Lensing by Galaxies and Clusters -- 6.1 Strong Lensing by Galaxies and Galaxy Clusters -- 6.1.1 Scale of the Lensing Events -- 6.1.2 Strong Lensing Cross-Section -- 6.1.3 The Quest for Strong Lensing Galaxies -- 6.1.4 Strong Lensing by Galaxy Clusters -- 6.1.5 Lens Inversion -- Parametric Reconstruction Algorithms -- Simultaneous Reconstruction of Source and Lens -- Complex Parametric Models -- Free-Form Reconstruction Algorithms -- 6.2 Weak Lensing by Galaxy Clusters -- 6.2.1 The Principle -- 6.2.2 Ellipticity Measurements -- 6.2.3 Tangential and Cross Component of the Shear -- 6.2.4 Aperture Mass Densitometry -- 6.2.5 The Kaiser and Squires Inversion Algorithm -- 6.2.6 Challenges in Shear Measurements -- Intrinsic Source Ellipticity -- Effects of the Point-Spread-Function -- 6.2.7 Redshift Dependence of the Signal -- 6.2.8 Limitations of the Methods.
6.3 Applications of Lensing by Galaxies and Galaxy Clusters -- 6.3.1 The Nature of Dark Matter -- 6.3.2 The Interplay Between Dark Matter and Baryons -- 6.3.3 Cosmic Telescopes -- 6.3.4 Cosmological Applications -- 6.4 Python Applications -- 6.4.1 Parametric Strong Lensing Mass Reconstruction -- Simulating a Lens -- Lens Modeling -- Using More Constraints -- Optimization in the Source Plane -- 6.4.2 Parametric Weak Lensing Mass Measurement -- Weak Lensing Measurements -- Fit of the Tangential Shear Profile -- 6.4.3 The Kaiser-Squires Inversion Algorithm -- References -- 7 Lensing by Large-Scale Structure -- 7.1 Light Propagation Through an In-homogeneous Universe -- 7.1.1 Deflection of Light -- 7.1.2 Effective Convergence -- 7.1.3 Limber's Equation and the Convergence Correlation Function -- 7.1.4 Effective Lensing Potential, Lensing Jacobian, Shear -- 7.2 Cosmic Shear -- 7.2.1 Shear Correlation Functions -- 7.2.2 Shear in Apertures and Aperture Mass -- 7.2.3 E- and B-modes -- 7.2.4 Cosmic Shear as a Cosmological Probe -- 7.3 Lensing of Cosmic Microwave Background -- 7.3.1 Lensing of the CMB Temperature -- 7.3.2 Lensing of the CMB Polarization -- 7.3.3 Reconstruction of the Lensing Potential -- 7.4 Python Applications -- 7.4.1 Effective Shear and Potential -- 7.4.2 Power Spectrum -- 7.4.3 Correlation Functions -- References -- Part III Appendixes -- 8 Python Mini-Tutorial -- 8.1 Installation -- 8.2 Documentation -- 8.3 Running Python -- 8.4 Your First Python Code -- 8.5 Variables -- 8.6 Strings -- 8.7 Lists -- 8.8 Tuples -- 8.9 Dictionaries -- 8.10 Blocks and Indentation -- 8.11 IF/ELIF/ELSE -- 8.12 While Loops -- 8.13 For Loops -- 8.14 Functions -- 8.15 Classes -- 8.16 Inheritance -- 8.17 Modules -- 8.18 Importing Packages -- 9 Cosmology Primer -- 9.1 The Friedmann-Lemaitre-Robertson-Walker Metric -- 9.2 Redshift -- 9.3 The Friedmann Equations.
9.4 Cosmological Parameters -- 9.5 Cosmological Distances -- 9.6 The Friedmann Models -- 9.6.1 Single Component Models -- 9.6.2 Multiple Component Models -- 9.7 Structure Formation -- 9.7.1 Linear Growth of Density Perturbations -- 9.7.2 Density Power Spectrum -- 9.7.3 Non-linear Evolution -- 9.8 Mass Function -- 9.9 Dark Energy Models -- References -- Index.
Record Nr. UNISA-996466846203316
Meneghetti Massimo <1974->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Introduction to Gravitational Lensing : With Python Examples / / by Massimo Meneghetti
Introduction to Gravitational Lensing : With Python Examples / / by Massimo Meneghetti
Autore Meneghetti Massimo <1974->
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (417 pages)
Disciplina 523.112
Collana Lecture Notes in Physics
Soggetto topico Astronomy
Cosmology
Mathematical physics
Astrophysics
Astronomy, Cosmology and Space Sciences
Astronomy, Observations and Techniques
Theoretical, Mathematical and Computational Physics
ISBN 9783030735821
3030735826
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Light deflection -- The general lens -- Microlensing -- Strong lensing by galaxies and galaxy clusters -- Weak lensing by virialized structures -- Weak lensing by the large-scale-structure -- Lensing of the Cosmic Microwave Background.
Record Nr. UNINA-9910508441103321
Meneghetti Massimo <1974->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui