top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Explainable Uncertain Rule-Based Fuzzy Systems
Explainable Uncertain Rule-Based Fuzzy Systems
Autore Mendel Jerry M
Edizione [3rd ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (598 pages)
Disciplina 511.313
ISBN 3-031-35378-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Contents -- About the Author -- 1: Introduction -- 1.1 What This Book Is About -- 1.1.1 Rules -- 1.1.2 Partitions and Sets -- 1.1.2.1 Crisp Partitions -- 1.1.2.2 First-Order Uncertainty Partitions -- 1.1.2.3 Second-Order Uncertainty Partitions: Uniformly Weighted -- 1.1.2.4 Second-Order Uncertainty Partitions: Nonuniformly Weighted -- 1.1.2.5 Footprint of Uncertainty (FOU) -- 1.1.2.6 Comments -- 1.2 The Structure of a Rule-Based Fuzzy System -- 1.3 A New Direction for Fuzzy Systems -- 1.4 Fundamental Design Requirement -- 1.5 Advisable Design Approaches -- 1.6 Understanding the Potential for Improved Performance -- 1.7 Explainable Fuzzy Systems -- 1.8 An Impressionistic Brief History of Type-1 Fuzzy Sets and Fuzzy Logic -- 1.9 Literature on Type-2 Fuzzy Sets and Fuzzy Systems -- 1.9.1 Early Literature: 1975-1992 -- 1.9.2 Publications that Heavily Influenced the First Edition of This Book -- 1.9.3 Most Cited Articles -- 1.10 Coverage -- 1.11 Applicability Outside of Rule-Based Fuzzy Systems -- 1.12 Computation -- References -- 2: Type-1 Fuzzy Sets and Fuzzy Logic -- 2.1 Crisp Sets -- 2.2 Type-1 Fuzzy Sets and Associated Concepts -- 2.2.1 Lotfi A. Zadeh -- 2.2.2 Type-1 Fuzzy Set Defined -- 2.2.3 Type-1 Fuzzy Numbers -- 2.2.4 Linguistic Variables -- 2.2.5 Returning to Linguistic Labels from Numerical Values of MFs -- 2.3 Set Theoretic Operations for Crisp Sets -- 2.4 Set Theoretic Operations for Type-1 Fuzzy Sets -- 2.5 Crisp Relations and Compositions on the Same Product Space -- 2.6 Fuzzy Relations and Compositions on the Same Product Space -- 2.7 Crisp Relations and Compositions on Different Product Spaces -- 2.8 Fuzzy Relations and Compositions on Different Product Spaces -- 2.9 Hedges -- 2.10 Extension Principle -- 2.11 α-Cuts -- 2.12 Representing Type-1 Fuzzy Sets Using α-Cuts.
2.13 Functions of Type-1 Fuzzy Sets Computed by Using α-Cuts -- 2.14 Multivariable MFs and Cartesian Products -- 2.15 Crisp Logic -- 2.16 From Crisp Logic to Fuzzy Logic -- 2.17 Mamdani (Engineering) Implications -- 2.18 Remarks -- 1.1 Laws That Are Satisfied -- 1.2 Laws That Are Not Satisfied -- Appendix 2: Cardinality and Similarity -- 2.1 Cardinality of Type-1 Fuzzy Sets -- 2.2 Similarity of Type-1 Fuzzy Sets -- References -- 3: Type-1 Fuzzy Systems -- 3.1 Type-1 Fuzzy Systems -- 3.2 Rules -- 3.3 Fuzzifier -- 3.4 Fuzzy Inference Engine -- 3.4.1 General Results -- 3.4.2 Fuzzification and Its Effects on Inference -- 3.4.2.1 Singleton Fuzzifier -- 3.4.2.2 Non-Singleton Fuzzifier -- 3.5 Combining Fired-Rule Output Sets on the Way to Defuzzification -- 3.5.1 Mamdani Fuzzy System: Combining Using Set Theoretic Operations -- 3.5.2 Mamdani Fuzzy System: Combining Using a Weighted Combination -- 3.5.3 Mamdani and TSK Fuzzy Systems: Combining During Defuzzification -- 3.6 Defuzzifier -- 3.6.1 Mamdani Fuzzy System: Centroid Defuzzifier -- 3.6.2 Mamdani Fuzzy System: Height Defuzzifier -- 3.6.3 Mamdani Fuzzy System: COS Defuzzifier -- 3.6.4 TSK Fuzzy System Defuzzifiers -- 3.7 Comprehensive Example -- 3.8 Fuzzy Basis Functions -- 3.9 Sculpting the State Space and the Potential for Improved Performance over a Non-Fuzzy System -- 3.9.1 Course Sculpting of the State Space -- 3.9.2 Fine Sculpting of the State Space -- 3.9.3 Observations -- 3.10 Remarks and Insights -- 3.10.1 Unique Features of Type-1 Fuzzy Systems -- 3.10.2 Layered Architecture Interpretations of a Fuzzy System -- 3.10.3 Functional Equivalence to Other Machine Learning Methods -- 3.10.4 Universal Approximation by Fuzzy Systems -- 3.10.5 Continuity of Fuzzy Systems -- 3.10.6 Rule Explosion and Some Ways to Control It -- 3.10.7 Interpretable and Explainable T1 Fuzzy Systems -- 3.10.7.1 Introduction.
3.10.7.2 On Interpretable -- 3.10.7.3 On Explainable -- 3.10.8 A Top-Down Approach to T1 Fuzzy Systems -- 1.1 Evaluation of Sup-Star Composition for Minimum t-Norm -- 1.2 Evaluation of Sup-Star Composition for Product t-Norm -- 1.3 A Novel Suggestion -- Appendix 2: Constructing Type-1 Rule Partitions -- 2.1 Singleton Fuzzification: T1 First-Order Rule Partitions -- 2.2 Singleton Fuzzification: T1 Second-Order Rule Partitions -- 2.3 Non-Singleton Fuzzification: T1 First-Order Rule Partitions -- 2.4 Non-Singleton Fuzzification: T1 Second-Order Rule Partitions -- 2.5 Rule Crossover Phenomenon -- Appendix 3: Procedure for Determining the Active Rules in a First-Order Rule Partition -- 3.1 First-Order Rule Partition Information Table -- 3.2 Indexing Rules -- 3.3 Determining Rules Associated with x = x′ -- References -- 4: Type-1 Fuzzy Systems: Design Methods and Case Studies -- 4.1 Designing Type-1 Fuzzy Systems -- 4.1.1 Design Choices and Complexity -- 4.1.2 An Interpretation for the Design of a Type-1 Fuzzy System -- 4.1.3 Recapitulation of Mamdani and TSK Fuzzy Systems -- 4.1.4 Number of Design Degrees of Freedom and a Design Principle -- 4.1.5 High-Level Design Statements and Design Approaches -- 4.2 Some Design Methods -- 4.2.1 One-Pass Methods -- 4.2.1.1 Data Assignment Method -- 4.2.1.2 WM Method -- 4.2.2 Clustering Using Fuzzy c-Means (FCM) -- 4.2.3 Least Squares (LS) Method -- 4.2.4 Derivative-Based Methods (Back-Propagation) -- 4.2.5 Derivative-Free Methods -- 4.2.6 Hybrid Design Methods -- 4.2.6.1 Adaptive Network Fuzzy Inference System (ANFIS) -- 4.2.6.2 Structure Identification and Feature Extraction (SIFE) for TSK Systems -- 4.2.7 Remarks -- 4.3 Case Study: Forecasting of Time-Series -- 4.3.1 Mackey-Glass Chaotic Time Series -- 4.3.2 One-Pass Design: Singleton Fuzzification -- 4.3.3 Derivative-Based (BP) Design: Singleton Fuzzification.
4.3.4 A Change in the Measurements -- 4.3.5 One-Pass Design: Non-singleton Fuzzification -- 4.3.6 Derivative-Based (BP) Design: Non-singleton Fuzzification -- 4.3.7 Final Remark -- 4.4 Case Study: Knowledge Mining Using Surveys -- 4.4.1 Methodology for Knowledge Mining -- 4.4.2 Survey Results -- 4.4.3 Determining Type-1 Fuzzy Sets from Survey Results -- 4.4.4 What Does One Do with a Histogram of Responses? -- 4.4.5 Averaging the Responses: Consensus FLAs -- 4.4.6 Preserving All of the Responses -- 4.4.7 On Multiple Indicators -- 4.4.8 How to Use an FLA -- 4.4.9 Connections to the Perceptual Computer -- 4.5 Case Study: Rule-Based Classification of Video Traffic -- 4.5.1 Compressed Video Traffic -- 4.5.2 High-Level Video Classification Problem -- 4.5.3 Selected Features -- 4.5.4 MFs for the Features -- 4.5.5 Rules and Their Parameters -- 4.5.6 Computational Formulas for the RBC -- 4.5.7 Optimization of Rule Design Parameters -- 4.5.8 Testing the FL RBC -- 4.5.9 Results and Conclusions -- 4.6 Case Study: Fuzzy Logic Control -- 4.6.1 Early History of Fuzzy Control -- 4.6.2 What Is a Type-1 Fuzzy Logic Controller (FLC)? -- 4.6.3 Fuzzy PID Control -- 4.6.3.1 Background -- 4.6.3.2 General Structure of Fuzzy PID Controller -- 4.6.3.3 Conventional and Fuzzy PID Controller Design Methods -- 4.6.3.4 Simulation Results (T1-FPID Versus PID) -- 4.7 Case Study: Explainable Type-1 Fuzzy System -- 4.7.1 Computations Common to Both Fuzzy Systems -- 4.7.1.1 Firing Levels for the Active Rules -- 4.7.1.2 Similarities -- 4.7.2 Mamdani with Centroid Defuzzification -- 4.7.2.1 Computation of yc (2.4, 5.4, 9) -- 4.7.2.2 Explaining yc (2.4,5.4,9) -- 4.7.2.3 Quality of Explanation -- 4.7.3 Mamdani with COS Defuzzification -- 4.7.3.1 Computation of yCOS(2.4,5.4,9) -- 4.7.3.2 Explaining yCOS(2.4,5.4,9) -- 4.7.3.3 Observations -- 1.1 Count of MF Parameters.
1.2 T1 MF Constraints -- 1.3 Determine If Satisfying All of the Constraints Is Possible -- 1.4 Constraints Almost Always-Satisfied Parameters (CAASPs) -- 1.5 Comments -- 1.6 Optimizing T1 MF Parameters -- References -- 5: Sources of Uncertainty and Membership Functions -- 5.1 Uncertainties in a Fuzzy System -- 5.1.1 Uncertainty: General Discussions -- 5.1.2 Uncertainties and Sets -- 5.1.3 Uncertainties in a Fuzzy System -- 5.2 Words Mean Different Things to Different People -- 5.2.1 Collecting Word Data by Means of a Survey -- 5.2.2 Making Use of Word Uncertainties -- 5.2.3 Conclusion -- 5.3 Words Must Also Mean Similar Things to Different People -- 5.3.1 Probability-Based Solution of (5.1) -- 5.3.2 Iterative Solution of (5.1)s -- 5.3.3 Example -- 5.4 From Interval Data to a T1 FS -- 5.4.1 Mean and Standard Deviation for Each Data Interval -- 5.4.2 T1 FS Models and Their Mean and Standard Deviation -- 5.4.3 Computation of MF Parameters -- 5.4.4 Choice of T1 MF -- 5.4.5 Ensemble of T1 MFs -- References -- 6: Type-2 Fuzzy Sets Including Word Models -- 6.1 The Concept of a Type-2 Fuzzy Set -- 6.2 Definitions of a General Type-2 Fuzzy Set and Associated Concepts -- 6.3 Definitions of an IT2 FS and Associated Concepts -- 6.4 Examples of Two Popular FOUs -- 6.5 Interval Type-2 Fuzzy Numbers -- 6.6 Different Kinds of T2 FSs: Hierarchy -- 6.7 Mathematical Representations for T2 FSs -- 6.7.1 Vertical Slice Representation -- 6.7.2 Wavy Slice Representations -- 6.7.2.1 General Case -- 6.7.2.2 Covering the FOU -- 6.7.2.3 Minimal Coverings -- 6.7.2.4 Comments -- 6.7.3 Horizontal Slice Representation -- 6.7.4 Modeling Secondary MFs -- 6.8 Representing Non-T2 FSs as T2 FSs -- 6.9 Returning to Linguistic Labels for General T2 FSs -- 6.10 Multivariable Membership Functions -- 6.11 IT2 FS Word Models -- References -- 7: Working with Type-2 Fuzzy Sets.
7.1 Introduction and Guide for the Reader.
Record Nr. UNINA-9910831020703321
Mendel Jerry M  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Collana Signal Processing and Digital Filtering
Soggetto topico Electrical engineering
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910480728203321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Altri autori (Persone) BurrusC. S
Collana Signal Processing and Digital Filtering
Soggetto topico Electrical engineering
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910789225803321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Altri autori (Persone) BurrusC. S
Collana Signal Processing and Digital Filtering
Soggetto topico Electrical engineering
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910811750103321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertain Rule-Based Fuzzy Systems [[electronic resource] ] : Introduction and New Directions, 2nd Edition / / by Jerry M. Mendel
Uncertain Rule-Based Fuzzy Systems [[electronic resource] ] : Introduction and New Directions, 2nd Edition / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [2nd ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XXII, 684 p. 215 illus., 192 illus. in color.)
Disciplina 511.313
Soggetto topico Electrical engineering
Computational intelligence
Artificial intelligence
Neural networks (Computer science) 
Communications Engineering, Networks
Computational Intelligence
Artificial Intelligence
Mathematical Models of Cognitive Processes and Neural Networks
ISBN 3-319-51370-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part 1: Type-1 Fuzzy Sets and Systems -- Short Primers on Type-1 Fuzzy Sets and Fuzzy Logic -- Type-1 Fuzzy Logic Systems -- Part 2: Type-2 Fuzzy Sets -- Sources of Uncertainty -- Type-2 Fuzzy Sets -- Operations on and Properties OF Type-2 Fuzzy Sets -- Type-2 Relations and Compositions -- Centroid of a Type-2 Fuzzy Set: Type-Reduction -- Part 3: Type-2 Fuzzy Logic Systems -- Mamdani Interval Type-2 Fuzzy Logic Systems (IT2 FLSS) -- TSK Interval Type-2 Fuzzy Logic Systems -- General Type-2 Fuzzy Logic Systems (GT2 FLSS) -- Conclusion.
Record Nr. UNINA-9910254328903321
Mendel Jerry M  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui