top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Explainable Uncertain Rule-Based Fuzzy Systems / / by Jerry M. Mendel
Explainable Uncertain Rule-Based Fuzzy Systems / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [3rd ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (598 pages)
Disciplina 511.313
Soggetto topico Computational intelligence
Telecommunication
Artificial intelligence
Neural networks (Computer science)
Computational Intelligence
Communications Engineering, Networks
Artificial Intelligence
Mathematical Models of Cognitive Processes and Neural Networks
ISBN 3-031-35378-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part 1: Type-1 Fuzzy Sets and Systems -- Short Primers on Type-1 Fuzzy Sets and Fuzzy Logic -- Type-1 Fuzzy Logic Systems -- Part 2: Type-2 Fuzzy Sets -- Sources of Uncertainty -- Type-2 Fuzzy Sets -- Operations on and Properties OF Type-2 Fuzzy Sets -- Type-2 Relations and Compositions -- Centroid of a Type-2 Fuzzy Set: Type-Reduction -- Part 3: Type-2 Fuzzy Logic Systems -- Mamdani Interval Type-2 Fuzzy Logic Systems (IT2 FLSS) -- TSK Interval Type-2 Fuzzy Logic Systems -- General Type-2 Fuzzy Logic Systems (GT2 FLSS) -- Conclusion.
Record Nr. UNINA-9910831020703321
Mendel Jerry M  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Collana Signal Processing and Digital Filtering
Soggetto topico Electrical engineering
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910480728203321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution [[electronic resource] ] : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Altri autori (Persone) BurrusC. S
Collana Signal Processing and Digital Filtering
Soggetto topico Electrical engineering
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910789225803321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Maximum-Likelihood Deconvolution : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Maximum-Likelihood Deconvolution : A Journey into Model-Based Signal Processing / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [1st ed. 1990.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XIV, 227 p.)
Disciplina 621.382
Altri autori (Persone) BurrusC. S
Collana Signal Processing and Digital Filtering
Soggetto topico Telecommunication
Communications Engineering, Networks
ISBN 1-4612-3370-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.
Record Nr. UNINA-9910957363903321
Mendel Jerry M  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertain Rule-Based Fuzzy Systems : Introduction and New Directions, 2nd Edition / / by Jerry M. Mendel
Uncertain Rule-Based Fuzzy Systems : Introduction and New Directions, 2nd Edition / / by Jerry M. Mendel
Autore Mendel Jerry M
Edizione [2nd ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XXII, 684 p. 215 illus., 192 illus. in color.)
Disciplina 511.313
Soggetto topico Electrical engineering
Computational intelligence
Artificial intelligence
Neural networks (Computer science)
Communications Engineering, Networks
Computational Intelligence
Artificial Intelligence
Mathematical Models of Cognitive Processes and Neural Networks
ISBN 3-319-51370-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part 1: Type-1 Fuzzy Sets and Systems -- Short Primers on Type-1 Fuzzy Sets and Fuzzy Logic -- Type-1 Fuzzy Logic Systems -- Part 2: Type-2 Fuzzy Sets -- Sources of Uncertainty -- Type-2 Fuzzy Sets -- Operations on and Properties OF Type-2 Fuzzy Sets -- Type-2 Relations and Compositions -- Centroid of a Type-2 Fuzzy Set: Type-Reduction -- Part 3: Type-2 Fuzzy Logic Systems -- Mamdani Interval Type-2 Fuzzy Logic Systems (IT2 FLSS) -- TSK Interval Type-2 Fuzzy Logic Systems -- General Type-2 Fuzzy Logic Systems (GT2 FLSS) -- Conclusion.
Record Nr. UNINA-9910254328903321
Mendel Jerry M  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui