top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Autore Llamas-Garro Ignacio
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , [2018]
Descrizione fisica 1 online resource (x, 207 pages) : illustrations
Disciplina 621.3813
Collana Artech microwave library
Soggetto topico Microwaves - Measurement
Microwave devices
Frequency response (Electrical engineering)
Soggetto genere / forma Electronic books.
ISBN 1-63081-516-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Measurement Technology; Contents; Preface; Chapter 1 Frequency Measurement Fundamentals; 1.1 OVERVIEW; 1.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT; 1.2.1 RF/microwave Measurement Theory; 1.2.2 Frequency Measurement Instrumentation; 1.2.3 Frequency Detection Architectures; References; Chapter 2 Instantaneous Frequency Measurement; 2.1 OVERVIEW; 2.2 INTRODUCTION TO INSTANTANEOUS FREQUENCY MEASUREMENT; 2.3 IFM RECEIVERS; 2.3.1 Analog Frequency Discriminators; 2.3.2 Digital Frequency Discriminators; 2.4 IFM DESIGNS; 2.4.1 IFM Using Interferometers Based on Delay Lines.
2.4.2 IFM Using Multiband-stop Filters2.5 CONCLUSIONS AND FUTURE WORK; References; Chapter 3 Reconfigurable Frequency Measurement; 3.1 OVERVIEW; 3.2 INTRODUCTION TO RFM; 3.3 RFM RECEIVER ARCHITECTURES; 3.3.1 Block Diagrams and Components of an RFM Receiver; 3.3.2 A Comparison between IFM and RFM; 3.3.3 Elements for Reconfiguration; 3.4 RFM DESIGNS; 3.4.1 RFM Using PIN Diodes with 2 Bits for Frequency Identification; 3.4.2 RFM Using PIN Diodes with 4 Bits for Frequency Identification; 3.5 CONCLUSIONS; References; Chapter 4 Photonic Instantaneous Frequency Measurement; 4.1 OVERVIEW.
4.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT4.3 IFM PRINCIPLE; 4.3.1 Electronic IFM; 4.3.2 Photonic IFM; 4.4 IFM BASED ON OPTICAL INTERFEROMETRY; 4.4.1 IFM Based on Noncoherent Optical Delays; 4.4.2 IFM Based on Coherent Optical Delays; 4.5 IFM BASED ON POLARIZATION EFFECTS; 4.5.1 IFM Based on Measurement of Stokes Parameters; 4.5.2 IFM Based on Polarization Interferometers; 4.5.3 IFM Based on Polarization Modulator and Polarization Adjustments; 4.5.4 IFM Based on Polarization Modulators and Modulation Bias Adjustments; 4.5.5 IFM Based on Polarization Modulator and Dispersion.
4.5.6 IFM Based on Polarization Microwave Photonic Filter Pairs4.6 IFM BASED ON OPTICAL FILTERING; 4.6.1 IFM Based on Mach-Zehnder Interferometer Optical Filters; 4.6.2 IFM Based on Ring-resonator Optical Filters; 4.6.3 IFM Based on the Bragg Grating Optical Filters; 4.7 IFM BASED ON FREQUENCY TO TIME MAPPING; 4.7.1 Single RF Signal Measurement; 4.7.2 Multiple RF Signal Measurement; 4.8 IFM BASED ON OPTICAL MIXING; 4.8.1 IFM Based on Optoelectrical Mixing; 4.8.2 IFM Based on All Optical Mixing; 4.9 IFM BASED ON STIMULATED BRILLOUIN SCATTERING.
4.9.1 Stimulated Brillouin Scattering in Optical Fibers4.9.2 IFM Based on SBS Resonance Shift; 4.9.3 IFM Based on SBS Resonance and Channelizing Probe Array; 4.9.4 IFM Based on SBS Resonance Channelizers; 4.10 OTHER PHOTONIC IFM APPROACHES; 4.10.1 IFM Based on Microwave Photonic Filters; 4.10.2 IFM Based on Quadrature Optical Filter Pairs; 4.10.3 IFM Based on a Bank of Offset Optical Filters; 4.10.4 IFM Based on Phase to Intensity Modulation Conversions; 4.10.5 IFM Based on Photonic Assisted Samplings and Downconversions; 4.11 DISCUSSION; 4.12 CONCLUSION; References; About the Authors; Index.
Record Nr. UNINA-9910466484903321
Llamas-Garro Ignacio  
Boston, Massachusetts : , : Artech House, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Autore Llamas-Garro Ignacio
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , [2018]
Descrizione fisica 1 online resource (x, 207 pages) : illustrations
Disciplina 621.3813
Collana Artech microwave library
Soggetto topico Microwaves - Measurement
Microwave devices
Frequency response (Electrical engineering)
ISBN 1-63081-516-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Measurement Technology; Contents; Preface; Chapter 1 Frequency Measurement Fundamentals; 1.1 OVERVIEW; 1.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT; 1.2.1 RF/microwave Measurement Theory; 1.2.2 Frequency Measurement Instrumentation; 1.2.3 Frequency Detection Architectures; References; Chapter 2 Instantaneous Frequency Measurement; 2.1 OVERVIEW; 2.2 INTRODUCTION TO INSTANTANEOUS FREQUENCY MEASUREMENT; 2.3 IFM RECEIVERS; 2.3.1 Analog Frequency Discriminators; 2.3.2 Digital Frequency Discriminators; 2.4 IFM DESIGNS; 2.4.1 IFM Using Interferometers Based on Delay Lines.
2.4.2 IFM Using Multiband-stop Filters2.5 CONCLUSIONS AND FUTURE WORK; References; Chapter 3 Reconfigurable Frequency Measurement; 3.1 OVERVIEW; 3.2 INTRODUCTION TO RFM; 3.3 RFM RECEIVER ARCHITECTURES; 3.3.1 Block Diagrams and Components of an RFM Receiver; 3.3.2 A Comparison between IFM and RFM; 3.3.3 Elements for Reconfiguration; 3.4 RFM DESIGNS; 3.4.1 RFM Using PIN Diodes with 2 Bits for Frequency Identification; 3.4.2 RFM Using PIN Diodes with 4 Bits for Frequency Identification; 3.5 CONCLUSIONS; References; Chapter 4 Photonic Instantaneous Frequency Measurement; 4.1 OVERVIEW.
4.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT4.3 IFM PRINCIPLE; 4.3.1 Electronic IFM; 4.3.2 Photonic IFM; 4.4 IFM BASED ON OPTICAL INTERFEROMETRY; 4.4.1 IFM Based on Noncoherent Optical Delays; 4.4.2 IFM Based on Coherent Optical Delays; 4.5 IFM BASED ON POLARIZATION EFFECTS; 4.5.1 IFM Based on Measurement of Stokes Parameters; 4.5.2 IFM Based on Polarization Interferometers; 4.5.3 IFM Based on Polarization Modulator and Polarization Adjustments; 4.5.4 IFM Based on Polarization Modulators and Modulation Bias Adjustments; 4.5.5 IFM Based on Polarization Modulator and Dispersion.
4.5.6 IFM Based on Polarization Microwave Photonic Filter Pairs4.6 IFM BASED ON OPTICAL FILTERING; 4.6.1 IFM Based on Mach-Zehnder Interferometer Optical Filters; 4.6.2 IFM Based on Ring-resonator Optical Filters; 4.6.3 IFM Based on the Bragg Grating Optical Filters; 4.7 IFM BASED ON FREQUENCY TO TIME MAPPING; 4.7.1 Single RF Signal Measurement; 4.7.2 Multiple RF Signal Measurement; 4.8 IFM BASED ON OPTICAL MIXING; 4.8.1 IFM Based on Optoelectrical Mixing; 4.8.2 IFM Based on All Optical Mixing; 4.9 IFM BASED ON STIMULATED BRILLOUIN SCATTERING.
4.9.1 Stimulated Brillouin Scattering in Optical Fibers4.9.2 IFM Based on SBS Resonance Shift; 4.9.3 IFM Based on SBS Resonance and Channelizing Probe Array; 4.9.4 IFM Based on SBS Resonance Channelizers; 4.10 OTHER PHOTONIC IFM APPROACHES; 4.10.1 IFM Based on Microwave Photonic Filters; 4.10.2 IFM Based on Quadrature Optical Filter Pairs; 4.10.3 IFM Based on a Bank of Offset Optical Filters; 4.10.4 IFM Based on Phase to Intensity Modulation Conversions; 4.10.5 IFM Based on Photonic Assisted Samplings and Downconversions; 4.11 DISCUSSION; 4.12 CONCLUSION; References; About the Authors; Index.
Record Nr. UNINA-9910796812803321
Llamas-Garro Ignacio  
Boston, Massachusetts : , : Artech House, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Frequency measurement technology / / Ignacio Llamas-Garro, Marcos Tavares de Melo, Jung-Mu Kim
Autore Llamas-Garro Ignacio
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , [2018]
Descrizione fisica 1 online resource (x, 207 pages) : illustrations
Disciplina 621.3813
Collana Artech microwave library
Soggetto topico Microwaves - Measurement
Microwave devices
Frequency response (Electrical engineering)
ISBN 1-63081-516-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency Measurement Technology; Contents; Preface; Chapter 1 Frequency Measurement Fundamentals; 1.1 OVERVIEW; 1.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT; 1.2.1 RF/microwave Measurement Theory; 1.2.2 Frequency Measurement Instrumentation; 1.2.3 Frequency Detection Architectures; References; Chapter 2 Instantaneous Frequency Measurement; 2.1 OVERVIEW; 2.2 INTRODUCTION TO INSTANTANEOUS FREQUENCY MEASUREMENT; 2.3 IFM RECEIVERS; 2.3.1 Analog Frequency Discriminators; 2.3.2 Digital Frequency Discriminators; 2.4 IFM DESIGNS; 2.4.1 IFM Using Interferometers Based on Delay Lines.
2.4.2 IFM Using Multiband-stop Filters2.5 CONCLUSIONS AND FUTURE WORK; References; Chapter 3 Reconfigurable Frequency Measurement; 3.1 OVERVIEW; 3.2 INTRODUCTION TO RFM; 3.3 RFM RECEIVER ARCHITECTURES; 3.3.1 Block Diagrams and Components of an RFM Receiver; 3.3.2 A Comparison between IFM and RFM; 3.3.3 Elements for Reconfiguration; 3.4 RFM DESIGNS; 3.4.1 RFM Using PIN Diodes with 2 Bits for Frequency Identification; 3.4.2 RFM Using PIN Diodes with 4 Bits for Frequency Identification; 3.5 CONCLUSIONS; References; Chapter 4 Photonic Instantaneous Frequency Measurement; 4.1 OVERVIEW.
4.2 INTRODUCTION TO RF/MICROWAVE FREQUENCY MEASUREMENT4.3 IFM PRINCIPLE; 4.3.1 Electronic IFM; 4.3.2 Photonic IFM; 4.4 IFM BASED ON OPTICAL INTERFEROMETRY; 4.4.1 IFM Based on Noncoherent Optical Delays; 4.4.2 IFM Based on Coherent Optical Delays; 4.5 IFM BASED ON POLARIZATION EFFECTS; 4.5.1 IFM Based on Measurement of Stokes Parameters; 4.5.2 IFM Based on Polarization Interferometers; 4.5.3 IFM Based on Polarization Modulator and Polarization Adjustments; 4.5.4 IFM Based on Polarization Modulators and Modulation Bias Adjustments; 4.5.5 IFM Based on Polarization Modulator and Dispersion.
4.5.6 IFM Based on Polarization Microwave Photonic Filter Pairs4.6 IFM BASED ON OPTICAL FILTERING; 4.6.1 IFM Based on Mach-Zehnder Interferometer Optical Filters; 4.6.2 IFM Based on Ring-resonator Optical Filters; 4.6.3 IFM Based on the Bragg Grating Optical Filters; 4.7 IFM BASED ON FREQUENCY TO TIME MAPPING; 4.7.1 Single RF Signal Measurement; 4.7.2 Multiple RF Signal Measurement; 4.8 IFM BASED ON OPTICAL MIXING; 4.8.1 IFM Based on Optoelectrical Mixing; 4.8.2 IFM Based on All Optical Mixing; 4.9 IFM BASED ON STIMULATED BRILLOUIN SCATTERING.
4.9.1 Stimulated Brillouin Scattering in Optical Fibers4.9.2 IFM Based on SBS Resonance Shift; 4.9.3 IFM Based on SBS Resonance and Channelizing Probe Array; 4.9.4 IFM Based on SBS Resonance Channelizers; 4.10 OTHER PHOTONIC IFM APPROACHES; 4.10.1 IFM Based on Microwave Photonic Filters; 4.10.2 IFM Based on Quadrature Optical Filter Pairs; 4.10.3 IFM Based on a Bank of Offset Optical Filters; 4.10.4 IFM Based on Phase to Intensity Modulation Conversions; 4.10.5 IFM Based on Photonic Assisted Samplings and Downconversions; 4.11 DISCUSSION; 4.12 CONCLUSION; References; About the Authors; Index.
Record Nr. UNINA-9910809942903321
Llamas-Garro Ignacio  
Boston, Massachusetts : , : Artech House, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui