Explainable AI : foundations, methodologies and applications / / Mayuri Mehta, Vasile Palade, Indranath Chatterjee, editors
| Explainable AI : foundations, methodologies and applications / / Mayuri Mehta, Vasile Palade, Indranath Chatterjee, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
| Descrizione fisica | 1 online resource (273 pages) |
| Disciplina | 006.301 |
| Collana | Intelligent systems reference library |
| Soggetto topico | Artificial intelligence - Philosophy |
| ISBN | 3-031-12807-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Contributors -- Abbreviations -- 1 Black Box Models for eXplainable Artificial Intelligence -- 1.1 Introduction to Machine Learning -- 1.1.1 Motivation -- 1.1.2 Scope of the Paper -- 1.2 Importance of Cyber Security in eXplainable Artificial Intelligence -- 1.2.1 Importance of Trustworthiness -- 1.3 Deep Learning (DL) Methods Contribute to XAI -- 1.4 Intrusion Detection System -- 1.4.1 Classification of Intrusion Detection System -- 1.5 Applications of Cyber Security and XAI -- 1.6 Comparison of XAI Using Black Box Methods -- 1.7 Conclusion -- References -- 2 Fundamental Fallacies in Definitions of Explainable AI: Explainable to Whom and Why? -- 2.1 Introduction -- 2.1.1 A Short History of Explainable AI -- 2.1.2 Diversity of Motives for Creating Explainable AI -- 2.1.3 Internal Inconsistency of Motives for Creating XAI -- 2.1.4 The Contradiction Between the Motives for Creating Explainable AI -- 2.1.5 Paradigm Shift of Explainable Artificial Intelligence -- 2.2 Proposed AI Model -- 2.2.1 The Best Way to Optimize the Interaction Between Human and AI -- 2.2.2 Forecasts Are not Necessarily Useful Information -- 2.2.3 Criteria for Evaluating Explanations -- 2.2.4 Explainable to Whom and Why? -- 2.3 Proposed Architecture -- 2.3.1 Fitness Function for Explainable AI -- 2.3.2 Deep Neural Network is Great for Explainable AI -- 2.3.3 The More Multitasking the Better -- 2.3.4 How to Collect Multitasking Datasets -- 2.3.5 Proposed Neural Network Architecture -- 2.4 Conclusions -- References -- 3 An Overview of Explainable AI Methods, Forms and Frameworks -- 3.1 Introduction -- 3.2 XAI Methods and Their Classifications -- 3.2.1 Based on the Scope of Explainability -- 3.2.2 Based on Implementation -- 3.2.3 Based on Applicability -- 3.2.4 Based on Explanation Level -- 3.3 Forms of Explanation -- 3.3.1 Analytical Explanation.
3.3.2 Visual Explanation -- 3.3.3 Rule-Based Explanation -- 3.3.4 Textual Explanation -- 3.4 Frameworks for Model Interpretability and Explanation -- 3.4.1 Explain like I'm 5 -- 3.4.2 Skater -- 3.4.3 Local Interpretable Model-Agnostic Explanations -- 3.4.4 Shapley Additive Explanations -- 3.4.5 Anchors -- 3.4.6 Deep Learning Important Features -- 3.5 Conclusion and Future Directions -- References -- 4 Methods and Metrics for Explaining Artificial Intelligence Models: A Review -- 4.1 Introduction -- 4.1.1 Bringing Explainability to AI Decision-Need for Explainable AI -- 4.2 Taxonomy of Explaining AI Decisions -- 4.3 Methods of Explainable Artificial Intelligence -- 4.3.1 Techniques of Explainable AI -- 4.3.2 Stages of AI Explainability -- 4.3.3 Types of Post-model Explaination Methods -- 4.4 Metrics for Explainable Artificial Intelligence -- 4.4.1 Evaluation Metrics for Explaining AI Decisions -- 4.5 Use-Case: Explaining Deep Learning Models Using Grad-CAM -- 4.6 Challenges and Future Directions -- 4.7 Conclusion -- References -- 5 Evaluation Measures and Applications for Explainable AI -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Basics Related to XAI -- 5.3.1 Understanding -- 5.3.2 Explicability -- 5.3.3 Explainability -- 5.3.4 Transparency -- 5.3.5 Explaining -- 5.3.6 Interpretability -- 5.3.7 Correctability -- 5.3.8 Interactivity -- 5.3.9 Comprehensibility -- 5.4 What is Explainable AI? -- 5.4.1 Fairness -- 5.4.2 Causality -- 5.4.3 Safety -- 5.4.4 Bias -- 5.4.5 Transparency -- 5.5 Need for Transparency and Trust in AI -- 5.6 The Black Box Deep Learning Models -- 5.7 Classification of XAI Methods -- 5.7.1 Global Methods Versus Local Methods -- 5.7.2 Surrogate Methods Versus Visualization Methods -- 5.7.3 Model Specific Versus Model Agnostic -- 5.7.4 Pre-Model Versus In-Model Versus Post-Model -- 5.8 XAI's Evaluation Methods. 5.8.1 Mental Model -- 5.8.2 Explanation Usefulness and Satisfaction -- 5.8.3 User Trust and Reliance -- 5.8.4 Human-AI Task Performance -- 5.8.5 Computational Measures -- 5.9 XAI's Explanation Methods -- 5.9.1 Lime -- 5.9.2 Sp-Lime -- 5.9.3 DeepLIFT -- 5.9.4 Layer-Wise Relevance Propagation -- 5.9.5 Characteristic Value Evaluation -- 5.9.6 Reasoning from Examples -- 5.9.7 Latent Space Traversal -- 5.10 Explainable AI Stakeholders -- 5.10.1 Developers -- 5.10.2 Theorists -- 5.10.3 Ethicists -- 5.10.4 Users -- 5.11 Applications -- 5.11.1 XAI for Training and Tutoring -- 5.11.2 XAI for 6G -- 5.11.3 XAI for Network Intrusion Detection -- 5.11.4 XAI Planning as a Service -- 5.11.5 XAI for Prediction of Non-Communicable Diseases -- 5.11.6 XAI for Scanning Patients for COVID-19 Signs -- 5.12 Possible Research Ideology and Discussions -- 5.13 Conclusion -- References -- 6 Explainable AI and Its Applications in Healthcare -- 6.1 Introduction -- 6.2 The Multidisciplinary Nature of Explainable AI in Healthcare -- 6.2.1 Technological Outlook -- 6.2.2 Legal Outlook -- 6.2.3 Medical Outlook -- 6.2.4 Ethical Outlook -- 6.2.5 Patient Outlook -- 6.3 Different XAI Techniques Used in Healthcare -- 6.3.1 Methods to Explain Deep Learning Models -- 6.3.2 Explainability by Using White-Box Models -- 6.3.3 Explainability Methods to Increase Fairness in Machine Learning Models -- 6.3.4 Explainability Methods to Analyze Sensitivity of a Model -- 6.4 Application of XAI in Healthcare -- 6.4.1 Medical Diagnostics -- 6.4.2 Medical Imaging -- 6.4.3 Surgery -- 6.4.4 Detection of COVID-19 -- 6.5 Conclusion -- References -- 7 Explainable AI Driven Applications for Patient Care and Treatment -- 7.1 General -- 7.2 Benefits of Technology and AI in Healthcare Sector -- 7.3 Most Common AI-Based Healthcare Applications -- 7.4 Issues/Concerns of Using AI in Health Care. 7.5 Why Explainable AI? -- 7.6 History of XAI -- 7.7 Explainable AI's Benefits in Healthcare -- 7.8 XAI Has Proposed Applications for Patient Treatment and Care -- 7.9 Future Prospects of XAI in Medical Care -- 7.10 Case Study on Explainable AI -- 7.11 Framework for Explainable AI -- 7.12 Conclusion -- References -- 8 Explainable Machine Learning for Autonomous Vehicle Positioning Using SHAP -- 8.1 Introduction -- 8.1.1 Global Navigation Satellite System (GNSS) and Autonomous Vehicles -- 8.1.2 Navigation Using Inertial Measurement Sensors -- 8.1.3 Inertial Positioning Using Wheel Encoder Sensors -- 8.1.4 Motivation for Explainability in AV Positioning -- 8.2 eXplainable Artificial Intelligence (XAI): Background and Current Challenges -- 8.2.1 Why XAI in Autonomous Driving? -- 8.2.2 What is XAI? -- 8.2.3 Types of XAI -- 8.3 XAI in Autonomous Vehicle and Localisation -- 8.4 Methodology -- 8.4.1 Dataset: IO-VNBD (Inertial and Odometry Vehicle Navigation Benchmark Dataset) -- 8.4.2 Mathematical Formulation of the Learning Problem -- 8.4.3 WhONet's Learning Scheme -- 8.4.4 Performance Evaluation Metrics -- 8.4.5 Training of the WhONet Models -- 8.4.6 WhONet's Evaluation -- 8.4.7 SHapley Additive exPlanations (SHAP) Method -- 8.5 Results and Discussions -- 8.6 Conclusions -- References -- 9 A Smart System for the Assessment of Genuineness or Trustworthiness of the Tip-Off Using Audio Signals: An Explainable AI Approach -- 9.1 Introduction -- 9.2 Background -- 9.3 Proposed Methodology -- 9.3.1 Dataset Used -- 9.3.2 Pre-processing -- 9.3.3 Feature Extracted -- 9.3.4 Feature Selected -- 9.3.5 Machine Learning in SER -- 9.3.6 Performance Index -- 9.4 Results and Discussion -- 9.5 Conclusion -- References -- 10 Face Mask Detection Based Entry Control Using XAI and IoT -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 Methodology. 10.3.1 Web Application Execution -- 10.3.2 Implementation -- 10.3.3 Activation Functions -- 10.3.4 Raspberry Pi Webserver -- 10.4 Results -- 10.4.1 Dataset -- 10.4.2 Model Summary -- 10.4.3 Model Evaluation -- 10.5 Conclusion -- References -- 11 Human-AI Interfaces are a Central Component of Trustworthy AI -- 11.1 Introduction -- 11.2 Regulatory Requirements for Trustworthy AI -- 11.3 Explicability-An Ethical Principle for Trustworthy AI -- 11.4 User-Centered Approach to Trustworthy AI -- 11.4.1 Stakeholder Analysis and Personas for AI -- 11.4.2 User-Testing for AI -- 11.5 An Example Use Case: Computational Pathology -- 11.5.1 AI in Computational Pathology -- 11.5.2 Stakeholder Analysis for Computational Pathology -- 11.5.3 Human-AI Interface in Computational Pathology -- 11.6 Conclusion -- 11.7 List of Abbreviations -- References. |
| Record Nr. | UNINA-9910627258703321 |
| Cham, Switzerland : , : Springer, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Explainable AI in Health Informatics / / edited by Rajanikanth Aluvalu, Mayuri Mehta, Patrick Siarry
| Explainable AI in Health Informatics / / edited by Rajanikanth Aluvalu, Mayuri Mehta, Patrick Siarry |
| Autore | Aluvalu Rajanikanth |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (287 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
MehtaMayuri
SiarryPatrick |
| Collana | Computational Intelligence Methods and Applications |
| Soggetto topico |
Artificial intelligence
Medical informatics Biomedical engineering Artificial Intelligence Health Informatics Medical and Health Technologies |
| ISBN |
9789819737055
9789819737048 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction to Explainable AI -- Chapter 2. Explainable AI Methods and Applications -- Chapter 3. Unveil the Black Box Model for Healthcare Explainable AI -- Chapter 4. Explainable AI: Methods, Frameworks, and Tools for Healthcare 5.0 -- Chapter 5. Explainable AI in Disease Diagnosis -- Chapter 6. Explainable Artificial Intelligence in Drug Discovery -- Chapter 7. Explainable AI for Big Data Control -- Chapter 8. Patient Data Analytics using XAI- Existing Tools & Case Studies -- Chapter 9. Enhancing Diagnosis of Kidney Ailments from CT Scan with Explainable AI -- Chapter 10. Explainable AI for Colorectal Cancer Classification -- Chapter 11. Explainable AI (XAI)-based Robot-Assisted Surgical classification Procedure -- Chapter 12. Explainable AI Case Studies in Healthcare. |
| Record Nr. | UNINA-9910872197303321 |
Aluvalu Rajanikanth
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Recent Advances in Data and Algorithms for e-Government / / edited by Christophe Gaie, Mayuri Mehta
| Recent Advances in Data and Algorithms for e-Government / / edited by Christophe Gaie, Mayuri Mehta |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina |
352.3802854678
350.000285 |
| Collana | Artificial Intelligence-Enhanced Software and Systems Engineering |
| Soggetto topico |
Engineering - Data processing
Computational intelligence Artificial intelligence Data Engineering Computational Intelligence Artificial Intelligence |
| ISBN | 3-031-22408-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Conceptual Model and Data algorithm for Modernization of E-governance towards Sustainable E-Government Services -- E-School Initiatives that Instigated the Digital Transformation of Education: A Case Study according to SABER-ICT Framework -- New Architecture to facilitate the expansion of E-Government -- Struggling against tax fraud, a holistic approach using artificial intelligence -- e-Government and Green IT: the intersection point -- Machine Learning Technique for Predicting the Rural Citizens’ Trust on using E-Governance Health Care Applications during COVID-19 -- Artificial Intelligence (AI) Use for e-Governance in Agriculture: Exploring the Bioeconomy Landscape -- Enhancing government actions against Covid-19 using computer science -- From paper to digital: e-government's evolution and pitfalls in Brazil -- The role of public libraries in improving public literacy through Twitter social media in Indonesia. |
| Record Nr. | UNINA-9910678245503321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Tracking and Preventing Diseases with Artificial Intelligence / / edited by Mayuri Mehta, Philippe Fournier-Viger, Maulika Patel, Jerry Chun-Wei Lin
| Tracking and Preventing Diseases with Artificial Intelligence / / edited by Mayuri Mehta, Philippe Fournier-Viger, Maulika Patel, Jerry Chun-Wei Lin |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (266 pages) |
| Disciplina | 610.285 |
| Collana | Intelligent Systems Reference Library |
| Soggetto topico |
Computational intelligence
Biomedical engineering Artificial intelligence Computational Intelligence Biomedical Engineering and Bioengineering Artificial Intelligence |
| ISBN | 3-030-76732-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Stress Identification from Speech using Clustering techniques -- Comparative Study and Detection of COVID-19 and Related Viral Pneumonia using a Fine-tuned Deep Transfer Learning -- Predicting Glaucoma Diagnosis using AI -- Diagnosis and Analysis of Tuberculosis Disease using Simple Neural Network and Deep Learning Approach for Chest X-ray Images -- Adaptive Machine Learning Algorithm and Analytics of Big Genomic Data for Gene Prediction. |
| Record Nr. | UNINA-9910522913203321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Transforming Public Services—Combining Data and Algorithms to Fulfil Citizen’s Expectations / / edited by Christophe Gaie, Mayuri Mehta
| Transforming Public Services—Combining Data and Algorithms to Fulfil Citizen’s Expectations / / edited by Christophe Gaie, Mayuri Mehta |
| Autore | Gaie Christophe |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (247 pages) |
| Disciplina | 620.00285 |
| Altri autori (Persone) | MehtaMayuri |
| Collana | Intelligent Systems Reference Library |
| Soggetto topico |
Engineering - Data processing
Computational intelligence Big data Data Engineering Computational Intelligence Big Data |
| ISBN | 3-031-55575-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Digital Transformation of public services: Introduction, Current Trends and Future -- Enhancing Citizen Satisfaction Using Citizen-Facing Process Mining -- Thinking inside the Sandbox: Beyond public services digitalization with co-production -- Thinking inside the Sandbox: Beyond public services digitalization with co-production -- Usage of Modern API for automization of Government procedures -- Epidemiology inspired Cybersecurity Threats Forecasting Models applied to e-Government -- The provision of e-services by public administration bodies and their cybersecurity -- The provision of e-services by public administration bodies and their cybersecurity -- Fuzzy Logic Architecture for Availing the E-Governance Health Care Services by Rural Citizens -- Enhancing the efficiency and the security of e-Government: the French case study of human resources applications. |
| Record Nr. | UNINA-9910855395503321 |
Gaie Christophe
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||