Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis [[electronic resource] ] : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 190 p. 97 illus., 68 illus. in color.) |
Disciplina | 618.207543 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Optical data processing Application software Computer organization Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Computer Applications Computer Systems Organization and Communication Networks |
ISBN | 3-030-32875-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | First Workshop on Smart UltraSound Imaging -- Straight to the point: reinforcement learning for user guidance in ultrasound -- Registration of Untracked 2D Laparoscopic Ultrasound Liver Images to CT using Content-based Retrieval and Kinematic Priors -- Direct Detection and Measurement of Nuchal Translucency with Neural Networks from Ultrasound Images -- Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach -- SPRNet: Automatic Fetal Standard Plane Recognition Network for Ultrasound Images -- Representation Disentanglement for Multi-task Learning with application to Fetal Ultrasound -- Adversarial Learning for Deformable Image Registration: Application to 3D Ultrasound Image Fusion -- Monitoring Achilles tendon healing progress in ultrasound imaging with convolutional neural networks -- Deep Learning-based Pneumothorax Detection in Ultrasound Videos -- Deep Learning Based Minimum Variance Beamforming for Ultrasound Imaging -- 4th Workshop on Perinatal, Preterm and Paediatric Image Analysis -- Estimation of preterm birth markers with U-Net segmentation network -- Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach -- Dual Network Generative Adversarial Networks for Pediatric Echocardiography Segmentation -- Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI -- Plug-and-Play Priors for Reconstruction-based Placental Image Registration -- A Longitudinal Study of the Evolution of the Central Sulcus’ Shape in Preterm Infants using Manifold Learning -- Prediction of failure of induction of labor (IOL) from ultrasound images using radioman features -- Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair -- Quantifying Residual Motion Artifacts in Fetal fMRI Data -- Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR. |
Record Nr. | UNISA-996466302703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis : First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Alberto Gomez, Jana Hutter, Kristin McLeod, Veronika Zimmer, Oliver Zettinig, Roxane Licandro, Emma Robinson, Daan Christiaens, Esra Abaci Turk, Andrew Melbourne |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 190 p. 97 illus., 68 illus. in color.) |
Disciplina |
618.207543
616.07543 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Image processing - Digital techniques Computer vision Application software Computer engineering Computer networks Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Computer and Information Systems Applications Computer Engineering and Networks |
ISBN | 3-030-32875-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | First Workshop on Smart UltraSound Imaging -- Straight to the point: reinforcement learning for user guidance in ultrasound -- Registration of Untracked 2D Laparoscopic Ultrasound Liver Images to CT using Content-based Retrieval and Kinematic Priors -- Direct Detection and Measurement of Nuchal Translucency with Neural Networks from Ultrasound Images -- Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach -- SPRNet: Automatic Fetal Standard Plane Recognition Network for Ultrasound Images -- Representation Disentanglement for Multi-task Learning with application to Fetal Ultrasound -- Adversarial Learning for Deformable Image Registration: Application to 3D Ultrasound Image Fusion -- Monitoring Achilles tendon healing progress in ultrasound imaging with convolutional neural networks -- Deep Learning-based Pneumothorax Detection in Ultrasound Videos -- Deep Learning Based Minimum Variance Beamforming for Ultrasound Imaging -- 4th Workshop on Perinatal, Preterm and Paediatric Image Analysis -- Estimation of preterm birth markers with U-Net segmentation network -- Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach -- Dual Network Generative Adversarial Networks for Pediatric Echocardiography Segmentation -- Reproducibility of Functional Connectivity Estimates in Motion Corrected Fetal fMRI -- Plug-and-Play Priors for Reconstruction-based Placental Image Registration -- A Longitudinal Study of the Evolution of the Central Sulcus’ Shape in Preterm Infants using Manifold Learning -- Prediction of failure of induction of labor (IOL) from ultrasound images using radioman features -- Longitudinal analysis of fetal MRI in patients with prenatal spina bifida repair -- Quantifying Residual Motion Artifacts in Fetal fMRI Data -- Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR. |
Record Nr. | UNINA-9910349272603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges [[electronic resource] ] : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XIV, 487 p. 216 illus., 192 illus. in color.) |
Disciplina | 006.3 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Computer communication systems Data mining Image Processing and Computer Vision Artificial Intelligence Computer Communication Networks Data Mining and Knowledge Discovery |
ISBN | 3-030-12029-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cardiac imaging and image processing -- Machine learning applied to cardiac imaging and image analysis -- Atlas construction -- Statistical modelling of cardiac function across different patient populations -- Cardiac computational physiology -- Model customization -- Atlas based functional analysis -- Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of these methods. |
Record Nr. | UNISA-996466443503316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XIV, 487 p. 216 illus., 192 illus. in color.) |
Disciplina |
006.3
616.120757 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Computer communication systems Data mining Image Processing and Computer Vision Artificial Intelligence Computer Communication Networks Data Mining and Knowledge Discovery |
ISBN | 3-030-12029-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cardiac imaging and image processing -- Machine learning applied to cardiac imaging and image analysis -- Atlas construction -- Statistical modelling of cardiac function across different patient populations -- Cardiac computational physiology -- Model customization -- Atlas based functional analysis -- Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of these methods. |
Record Nr. | UNINA-9910337573303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges [[electronic resource] ] : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XI, 230 p. 108 illus.) |
Disciplina | 611.12 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Computer simulation Mathematical statistics Pattern recognition Cardiology Image Processing and Computer Vision Health Informatics Simulation and Modeling Probability and Statistics in Computer Science Pattern Recognition |
ISBN | 3-319-52718-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Function across different patient populations -- Cardiac mapping -- Cardiac computational physiology -- Model customization -- Image-based modelling and image-guided interventional procedures -- Atlas based functional analysis.-Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of the methods described. |
Record Nr. | UNISA-996465753603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XI, 230 p. 108 illus.) |
Disciplina | 611.12 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Computer simulation Mathematical statistics Pattern recognition Cardiology Image Processing and Computer Vision Health Informatics Simulation and Modeling Probability and Statistics in Computer Science Pattern Recognition |
ISBN | 3-319-52718-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Function across different patient populations -- Cardiac mapping -- Cardiac computational physiology -- Model customization -- Image-based modelling and image-guided interventional procedures -- Atlas based functional analysis.-Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of the methods described. |
Record Nr. | UNINA-9910483531403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|