top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
Autore McKechnie T. Stewart
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (694 pages)
Disciplina 700.94409034
Collana Progress in Optical Science and Photonics
Soggetto topico Light - Scattering
Meteorological optics
ISBN 9783030988289
9783030988272
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Contents -- In Memoriam -- About the Author -- 1 History of the Telescope and Its Remarkable Contribution to Scientific Discovery (and the 400-Year Journey from Galileo to a Rigorous General Theory of Imaging Through Earth's Turbulent Atmosphere) -- 1.1 Telescope Imaging Through Earth's Turbulent Atmosphere -- 1.2 Kolmogorov Theory (Mid-1960s) -- 1.3 Origins of the New General Theory -- 1.4 Publication of the New General Theory (1989/90) -- 1.5 Definitive Confirmation of Cores in Star Images -- 1.5.1 The UKIRT 3.8-m Instrument and Star Image Cores -- 1.6 Horace Babcock and Adaptive Optics -- 1.7 Pivotal Equation Yielded by the New General Theory -- 1.8 Future Direction of Ground-Based Observational Astronomy -- 1.9 Final Destination! -- References -- 2 Introduction -- 2.1 Principal Cause of Differences Between Kolmogorov Theory and the New General Theory -- 2.1.1 Visible and IR Star Images for Large Turbulence Structure -- 2.1.2 Visible and IR Star Images for Small Turbulence Structure -- 2.2 Significant Features of the New General Theory -- 2.3 Book Content Preview -- 2.4 Kolmogorov Theory -- 2.4.1 Kolmogorov Theory and Its Damage Legacy -- 2.5 The New General Theory -- References -- 3 Terms, Definitions, and Theoretical Foundations -- 3.1 Air Refractive Index -- 3.1.1 Air Temperature and Altitude -- 3.1.2 Air Pressure and Altitude -- 3.1.3 Integrated Optical Path Difference Over the Entire Atmospheric Depth -- 3.1.4 Effect of Humidity -- 3.1.5 Effect of Dispersion -- 3.1.6 Random Variables Associated with Atmospheric Turbulence -- 3.1.7 Astronomical Refraction -- 3.1.8 Atmospheric Extinction -- 3.2 Point-Objects -- 3.3 The Electromagnetic Spectrum -- 3.4 Quasi-Monochromatic Light -- 3.5 Amplitude and Phase of Light Waves Disrupted by Turbulence -- 3.6 The Atmosphere Considered as a Stochastic Process.
3.6.1 Spatial and Temporal Stationarity and the Ensemble Average -- 3.6.2 Standard Error and Standard Deviation -- 3.6.3 Autocovariance and Autocorrelation Functions, the Variance, and Rms -- 3.6.4 The Atmospheric Refractive Index Field -- 3.7 Scalar Diffraction Theory -- 3.7.1 Scalar Diffraction Theory Applied to Atmospheric Propagation -- 3.7.2 Scalar Diffraction Theory Applied to Telescope Imaging -- 3.7.3 Monochromatic Light Fields -- 3.7.4 Analytic Signal -- 3.7.5 Complex Amplitude -- 3.7.6 Intensity -- 3.7.7 Irradiance -- 3.7.8 Polychromatic Light Fields -- 3.8 Coherence Terminology -- 3.9 Free-Space Propagation -- 3.9.1 Maxwell's Electromagnetic Wave Equations -- 3.9.2 Helmholtz Equation -- 3.9.3 Solutions for Infinitely Extensive Plane Waves -- 3.10 Mathematical Notations and Quantity Dimensions -- References -- 4 Diffraction -- 4.1 Diffraction by an Aperture -- 4.1.1 Fresnel Number -- 4.1.2 Fresnel-Kirchoff Diffraction Formula -- 4.1.3 Fresnel Near-Field Diffraction -- 4.1.4 Stationary Phase -- 4.1.5 Fraunhofer Far-Field Diffraction -- 4.2 Optical System Terminology -- 4.2.1 Telescopes, Telescope Objectives, and Eyepieces -- 4.2.2 Aperture Stops, Pupils, Conjugate Distances, Focal Lengths, and F/Numbers -- 4.2.3 Light Rays and Ray Terminology -- 4.2.4 Objects at Finite Distances -- 4.2.5 Objects at Infinite Distances -- 4.2.6 Pupil Functions -- 4.3 The Amplitude Point Spread Function -- 4.3.1 For Diffraction-Limited Telescopes with Circular Apertures -- 4.4 The Intensity Point Spread Function -- 4.4.1 The Airy Pattern -- 4.5 Strehl Intensity -- 4.5.1 Expressed in Terms of Rms Wavefront Error -- 4.5.2 For Circularly Symmetric Images -- 4.6 Rayleigh Resolution Criterion -- 4.7 Images of Extended Objects -- 4.7.1 Superposition Property -- 4.7.2 Nonlinear Optical Phenomena -- 4.7.3 Isoplanaticity -- 4.7.4 Convolution Integrals.
4.7.5 Images of Coherently Illuminated Extended Objects -- 4.7.6 Images of Incoherently Illuminated Extended Objects -- 4.7.7 Images of Partially Coherently Illuminated Extended Objects -- 4.8 Images of Two-Point Objects -- 4.8.1 Incoherently Illuminated Two-Point Objects -- 4.8.2 Coherently Illuminated Two-Point Objects -- 4.9 Stellar Speckle Patterns -- 4.10 Effect of Central Obstruction on Telescope Point Spread Functions -- 4.11 Mathematical Notation Used in This Chapter -- References -- 5 Wave Propagation After Scattering by a Thin Atmospheric Layer -- 5.1 Characterizing Atmospheric Paths and Telescopes by MTFs and OTFs -- 5.2 The Atmospheric Refractive Index -- 5.3 Wave Propagation in the Geometrical Optics Region -- 5.3.1 Optical Path Difference -- 5.3.2 Phase Angle of the Exiting Wave -- 5.3.3 Complex Amplitude of the Exiting Wave -- 5.3.4 The Two-Point Two-Wavelength Correlation Function for Exiting Waves -- 5.3.5 Complex Coherence Factor for Exiting Waves -- 5.3.6 Illustrative Plots of the Complex Coherence Factor -- 5.3.7 Illustrative Plots of the Two-Point Two-Wavelength Correlation Function -- 5.4 Near-Field Propagation of the Complex Amplitude -- 5.5 Near-Field Propagation of the Two-Point Two-Wavelength Correlation Function -- 5.5.1 Cases Where the Function Conserves -- 5.5.2 General Case of Non-Conservation of the Function -- 5.6 Near-Field Propagation of the Complex Coherence Factor -- 5.7 Development of Scintillation After Light Scattering by a Thin Layer -- 5.7.1 Dependence of Scintillation on Turbulence Scale Sizes in the Layer -- 5.7.2 Dependence of Scintillation on the Various Controlling Parameters -- 5.7.3 Effective Fresnel Numbers for Atmospheric Paths -- 5.8 Mathematical Notation Used in This Chapter -- References -- 6 Wave Propagation Over Extended Atmospheric Paths.
6.1 Atmospheric MTF Expressions Developed by Hufnagel and Stanley -- 6.1.1 Hufnagel and Stanley's General Expression for the Atmospheric MTF -- 6.1.2 Hufnagel and Stanley's Kolmogorov-Based Expression for the Atmospheric MTF -- 6.2 Layered Model Representations of Extended Atmospheric Paths -- 6.2.1 Two Equivalent Random Phase Screen Atmospheric Path Models -- 6.2.2 Properties of the Phase Screens in the Uncorrelated Random Phase Screen Path Model -- 6.2.3 Effect of Individual Random Phase Screens on Transmitted Light Waves -- 6.3 General Expression for the Two-Point Two-Wavelength Correlation Function -- 6.3.1 Case of Isotropic Turbulence -- 6.3.2 The Functional Form When ρ( ξ, ) is Gaussian -- 6.4 General Expression for the Atmospheric MTF -- 6.4.1 Case of Isotropic Turbulence -- 6.4.2 Functional Forms When ρ( ξ, ) is Gaussian -- 6.4.3 Comparison of the General Expression to that of Hufnagel and Stanley -- 6.5 Equivalent Phase Screen Representation of an Atmospheric Path -- 6.5.1 Relationship Between ρ(ξ, η) and the Refractive Index Structure Function, DN -- 6.5.2 Location of the Equivalent Phase Screen in the Atmospheric Path -- 6.5.3 Complex Amplitude Properties Arising from an Equivalent Phase Screen -- 6.5.4 Properties of the OPD Fluctuation Created by an Equivalent Phase Screen -- 6.6 General Expressions for M and S that Include Dispersion -- 6.7 Mathematical Notation Used in This Chapter -- References -- 7 Properties of Point-Object Images Formed by Telescopes -- 7.1 Long- and Short-Exposure Images of Point-Objects -- 7.2 Telescope Coordinate Systems -- 7.3 The Complex Amplitude in an Instantaneous Point-Object Image -- 7.4 Telescope OTFs and MTFs -- 7.4.1 Telescope OTF and MTF for Incoherent Illumination -- 7.4.2 Amplitude Transfer Function of a Telescope for Coherent Illumination.
7.5 Two-Point Two-Wavelength Correlation Function of the Complex Amplitudes in the Image -- 7.5.1 Characterizing the Influence of the Telescope Optics -- 7.5.2 Unit-Normalized Form of the Function -- 7.5.3 The Function at a Single Point in the Image -- 7.5.4 The Spectral Correlation Function at the Center of a Point-Object Image -- 7.6 Complex Coherence Factor of the Complex Amplitude in the Image -- 7.7 Average Intensity Envelopes for Point-Object Images -- 7.8 Statistics of the Complex Amplitude in Point-Object Images Formed by Large Telescopes -- 7.8.1 Reed's Theorem for Gaussian-Distributed Complex Random Variables -- 7.8.2 Unit-Normalized Two-Point Two-Wavelength Correlation Function of the Image Intensities -- 7.8.3 Two-Wavelength Correlation Function of the Intensity at a Single Point in the Image -- 7.8.4 Two-Wavelength Correlation Function of the Complex Amplitude at a Single Point in the Image -- 7.9 OTF for an Entire End-To-End Imaging Path -- 7.9.1 OTF for an Entire End-To-End Imaging Path for Space Telescopes -- 7.9.2 OTF and Intensity PSF for a Diffraction-Limited Telescope with Circular Aperture -- 7.10 Mathematical Notation Used in This Chapter -- References -- 8 Atmospheric Path Characterization -- 8.1 Obtaining the Atmospheric MTF from Point-Object Images -- 8.1.1 For Large Diffraction-Limited Telescopes -- 8.1.2 Long- and Short-Exposure Atmospheric MTFs -- 8.1.3 Effective End-to-End OTF for a Telescope Equipped with Adaptive Optics -- 8.1.4 Atmospheric MTF Plots and Corresponding Intensity Envelopes -- 8.2 Measurement of the rms OPD Fluctuation -- 8.2.1 Measurement for the Case σ/λge0.4 Using Two Narrowband Filters -- 8.2.2 Measurement for the Case σ/λ ≥ 0.4 Using a Broadband Filter -- 8.2.3 Actual Field Measurements of σ -- 8.2.4 Telescope Aberrations Do not Affect the Measured σ Values -- 8.2.5 Convergence of σ as λ2to λ1.
8.2.6 Measurement of σ for the Case σ/λ<.
Record Nr. UNINA-9910616387503321
McKechnie T. Stewart  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
Autore McKechnie T. Stewart
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (694 pages)
Disciplina 700.94409034
Collana Progress in Optical Science and Photonics
Soggetto topico Light - Scattering
Meteorological optics
ISBN 9783030988289
9783030988272
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Contents -- In Memoriam -- About the Author -- 1 History of the Telescope and Its Remarkable Contribution to Scientific Discovery (and the 400-Year Journey from Galileo to a Rigorous General Theory of Imaging Through Earth's Turbulent Atmosphere) -- 1.1 Telescope Imaging Through Earth's Turbulent Atmosphere -- 1.2 Kolmogorov Theory (Mid-1960s) -- 1.3 Origins of the New General Theory -- 1.4 Publication of the New General Theory (1989/90) -- 1.5 Definitive Confirmation of Cores in Star Images -- 1.5.1 The UKIRT 3.8-m Instrument and Star Image Cores -- 1.6 Horace Babcock and Adaptive Optics -- 1.7 Pivotal Equation Yielded by the New General Theory -- 1.8 Future Direction of Ground-Based Observational Astronomy -- 1.9 Final Destination! -- References -- 2 Introduction -- 2.1 Principal Cause of Differences Between Kolmogorov Theory and the New General Theory -- 2.1.1 Visible and IR Star Images for Large Turbulence Structure -- 2.1.2 Visible and IR Star Images for Small Turbulence Structure -- 2.2 Significant Features of the New General Theory -- 2.3 Book Content Preview -- 2.4 Kolmogorov Theory -- 2.4.1 Kolmogorov Theory and Its Damage Legacy -- 2.5 The New General Theory -- References -- 3 Terms, Definitions, and Theoretical Foundations -- 3.1 Air Refractive Index -- 3.1.1 Air Temperature and Altitude -- 3.1.2 Air Pressure and Altitude -- 3.1.3 Integrated Optical Path Difference Over the Entire Atmospheric Depth -- 3.1.4 Effect of Humidity -- 3.1.5 Effect of Dispersion -- 3.1.6 Random Variables Associated with Atmospheric Turbulence -- 3.1.7 Astronomical Refraction -- 3.1.8 Atmospheric Extinction -- 3.2 Point-Objects -- 3.3 The Electromagnetic Spectrum -- 3.4 Quasi-Monochromatic Light -- 3.5 Amplitude and Phase of Light Waves Disrupted by Turbulence -- 3.6 The Atmosphere Considered as a Stochastic Process.
3.6.1 Spatial and Temporal Stationarity and the Ensemble Average -- 3.6.2 Standard Error and Standard Deviation -- 3.6.3 Autocovariance and Autocorrelation Functions, the Variance, and Rms -- 3.6.4 The Atmospheric Refractive Index Field -- 3.7 Scalar Diffraction Theory -- 3.7.1 Scalar Diffraction Theory Applied to Atmospheric Propagation -- 3.7.2 Scalar Diffraction Theory Applied to Telescope Imaging -- 3.7.3 Monochromatic Light Fields -- 3.7.4 Analytic Signal -- 3.7.5 Complex Amplitude -- 3.7.6 Intensity -- 3.7.7 Irradiance -- 3.7.8 Polychromatic Light Fields -- 3.8 Coherence Terminology -- 3.9 Free-Space Propagation -- 3.9.1 Maxwell's Electromagnetic Wave Equations -- 3.9.2 Helmholtz Equation -- 3.9.3 Solutions for Infinitely Extensive Plane Waves -- 3.10 Mathematical Notations and Quantity Dimensions -- References -- 4 Diffraction -- 4.1 Diffraction by an Aperture -- 4.1.1 Fresnel Number -- 4.1.2 Fresnel-Kirchoff Diffraction Formula -- 4.1.3 Fresnel Near-Field Diffraction -- 4.1.4 Stationary Phase -- 4.1.5 Fraunhofer Far-Field Diffraction -- 4.2 Optical System Terminology -- 4.2.1 Telescopes, Telescope Objectives, and Eyepieces -- 4.2.2 Aperture Stops, Pupils, Conjugate Distances, Focal Lengths, and F/Numbers -- 4.2.3 Light Rays and Ray Terminology -- 4.2.4 Objects at Finite Distances -- 4.2.5 Objects at Infinite Distances -- 4.2.6 Pupil Functions -- 4.3 The Amplitude Point Spread Function -- 4.3.1 For Diffraction-Limited Telescopes with Circular Apertures -- 4.4 The Intensity Point Spread Function -- 4.4.1 The Airy Pattern -- 4.5 Strehl Intensity -- 4.5.1 Expressed in Terms of Rms Wavefront Error -- 4.5.2 For Circularly Symmetric Images -- 4.6 Rayleigh Resolution Criterion -- 4.7 Images of Extended Objects -- 4.7.1 Superposition Property -- 4.7.2 Nonlinear Optical Phenomena -- 4.7.3 Isoplanaticity -- 4.7.4 Convolution Integrals.
4.7.5 Images of Coherently Illuminated Extended Objects -- 4.7.6 Images of Incoherently Illuminated Extended Objects -- 4.7.7 Images of Partially Coherently Illuminated Extended Objects -- 4.8 Images of Two-Point Objects -- 4.8.1 Incoherently Illuminated Two-Point Objects -- 4.8.2 Coherently Illuminated Two-Point Objects -- 4.9 Stellar Speckle Patterns -- 4.10 Effect of Central Obstruction on Telescope Point Spread Functions -- 4.11 Mathematical Notation Used in This Chapter -- References -- 5 Wave Propagation After Scattering by a Thin Atmospheric Layer -- 5.1 Characterizing Atmospheric Paths and Telescopes by MTFs and OTFs -- 5.2 The Atmospheric Refractive Index -- 5.3 Wave Propagation in the Geometrical Optics Region -- 5.3.1 Optical Path Difference -- 5.3.2 Phase Angle of the Exiting Wave -- 5.3.3 Complex Amplitude of the Exiting Wave -- 5.3.4 The Two-Point Two-Wavelength Correlation Function for Exiting Waves -- 5.3.5 Complex Coherence Factor for Exiting Waves -- 5.3.6 Illustrative Plots of the Complex Coherence Factor -- 5.3.7 Illustrative Plots of the Two-Point Two-Wavelength Correlation Function -- 5.4 Near-Field Propagation of the Complex Amplitude -- 5.5 Near-Field Propagation of the Two-Point Two-Wavelength Correlation Function -- 5.5.1 Cases Where the Function Conserves -- 5.5.2 General Case of Non-Conservation of the Function -- 5.6 Near-Field Propagation of the Complex Coherence Factor -- 5.7 Development of Scintillation After Light Scattering by a Thin Layer -- 5.7.1 Dependence of Scintillation on Turbulence Scale Sizes in the Layer -- 5.7.2 Dependence of Scintillation on the Various Controlling Parameters -- 5.7.3 Effective Fresnel Numbers for Atmospheric Paths -- 5.8 Mathematical Notation Used in This Chapter -- References -- 6 Wave Propagation Over Extended Atmospheric Paths.
6.1 Atmospheric MTF Expressions Developed by Hufnagel and Stanley -- 6.1.1 Hufnagel and Stanley's General Expression for the Atmospheric MTF -- 6.1.2 Hufnagel and Stanley's Kolmogorov-Based Expression for the Atmospheric MTF -- 6.2 Layered Model Representations of Extended Atmospheric Paths -- 6.2.1 Two Equivalent Random Phase Screen Atmospheric Path Models -- 6.2.2 Properties of the Phase Screens in the Uncorrelated Random Phase Screen Path Model -- 6.2.3 Effect of Individual Random Phase Screens on Transmitted Light Waves -- 6.3 General Expression for the Two-Point Two-Wavelength Correlation Function -- 6.3.1 Case of Isotropic Turbulence -- 6.3.2 The Functional Form When ρ( ξ, ) is Gaussian -- 6.4 General Expression for the Atmospheric MTF -- 6.4.1 Case of Isotropic Turbulence -- 6.4.2 Functional Forms When ρ( ξ, ) is Gaussian -- 6.4.3 Comparison of the General Expression to that of Hufnagel and Stanley -- 6.5 Equivalent Phase Screen Representation of an Atmospheric Path -- 6.5.1 Relationship Between ρ(ξ, η) and the Refractive Index Structure Function, DN -- 6.5.2 Location of the Equivalent Phase Screen in the Atmospheric Path -- 6.5.3 Complex Amplitude Properties Arising from an Equivalent Phase Screen -- 6.5.4 Properties of the OPD Fluctuation Created by an Equivalent Phase Screen -- 6.6 General Expressions for M and S that Include Dispersion -- 6.7 Mathematical Notation Used in This Chapter -- References -- 7 Properties of Point-Object Images Formed by Telescopes -- 7.1 Long- and Short-Exposure Images of Point-Objects -- 7.2 Telescope Coordinate Systems -- 7.3 The Complex Amplitude in an Instantaneous Point-Object Image -- 7.4 Telescope OTFs and MTFs -- 7.4.1 Telescope OTF and MTF for Incoherent Illumination -- 7.4.2 Amplitude Transfer Function of a Telescope for Coherent Illumination.
7.5 Two-Point Two-Wavelength Correlation Function of the Complex Amplitudes in the Image -- 7.5.1 Characterizing the Influence of the Telescope Optics -- 7.5.2 Unit-Normalized Form of the Function -- 7.5.3 The Function at a Single Point in the Image -- 7.5.4 The Spectral Correlation Function at the Center of a Point-Object Image -- 7.6 Complex Coherence Factor of the Complex Amplitude in the Image -- 7.7 Average Intensity Envelopes for Point-Object Images -- 7.8 Statistics of the Complex Amplitude in Point-Object Images Formed by Large Telescopes -- 7.8.1 Reed's Theorem for Gaussian-Distributed Complex Random Variables -- 7.8.2 Unit-Normalized Two-Point Two-Wavelength Correlation Function of the Image Intensities -- 7.8.3 Two-Wavelength Correlation Function of the Intensity at a Single Point in the Image -- 7.8.4 Two-Wavelength Correlation Function of the Complex Amplitude at a Single Point in the Image -- 7.9 OTF for an Entire End-To-End Imaging Path -- 7.9.1 OTF for an Entire End-To-End Imaging Path for Space Telescopes -- 7.9.2 OTF and Intensity PSF for a Diffraction-Limited Telescope with Circular Aperture -- 7.10 Mathematical Notation Used in This Chapter -- References -- 8 Atmospheric Path Characterization -- 8.1 Obtaining the Atmospheric MTF from Point-Object Images -- 8.1.1 For Large Diffraction-Limited Telescopes -- 8.1.2 Long- and Short-Exposure Atmospheric MTFs -- 8.1.3 Effective End-to-End OTF for a Telescope Equipped with Adaptive Optics -- 8.1.4 Atmospheric MTF Plots and Corresponding Intensity Envelopes -- 8.2 Measurement of the rms OPD Fluctuation -- 8.2.1 Measurement for the Case σ/λge0.4 Using Two Narrowband Filters -- 8.2.2 Measurement for the Case σ/λ ≥ 0.4 Using a Broadband Filter -- 8.2.3 Actual Field Measurements of σ -- 8.2.4 Telescope Aberrations Do not Affect the Measured σ Values -- 8.2.5 Convergence of σ as λ2to λ1.
8.2.6 Measurement of σ for the Case σ/λ<.
Record Nr. UNISA-996495164203316
McKechnie T. Stewart  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
General Theory of Light Propagation and Imaging Through the Atmosphere / / by T. Stewart McKechnie
General Theory of Light Propagation and Imaging Through the Atmosphere / / by T. Stewart McKechnie
Autore McKechnie T. Stewart
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXIX, 624 p. 190 illus., 13 illus. in color.)
Disciplina 551.565
Collana Springer Series in Optical Sciences
Soggetto topico Optics
Electrodynamics
Physical measurements
Measurement   
Observations, Astronomical
Astronomy—Observations
Atmospheric sciences
Physics
Classical Electrodynamics
Measurement Science and Instrumentation
Astronomy, Observations and Techniques
Atmospheric Sciences
Mathematical Methods in Physics
ISBN 3-319-18209-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Terms, Definitions and Theoretical foundations -- Diffraction -- Wave propagation after scattering by a thin atmospheric layer -- Wave propagation over extended atmospheric paths -- Properties of point-object im ages formed by telescopes -- Properties of point-object im ages formed by telescopes -- Average intensity envelopes of unresolved star images -- Core and halo structure in star images formed by large telescopes -- Statistical properties of stellar speckle patterns -- Star image appear ance for small and large average turbulence structure sizes -- Approximate intensity envelopes for star images formed by telescopes with/without AO -- Telescope optical tolerances and telescope resolution -- Laboratory simulation of im ages formed by large telescopes -- Laser beam propagation and atmospheric path characterization.- Atmospheric isoplanatic angle: Image stabilization and AO image correction.
Record Nr. UNINA-9910254624703321
McKechnie T. Stewart  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui