top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Autore McAulay Alastair D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2011]
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.4/46
623.446
Soggetto topico Lasers - Military applications
Laser weapons
Soggetto genere / forma Electronic books.
ISBN 1-283-37443-9
9786613374431
1-118-01954-7
1-118-01953-9
1-118-01955-5
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS
1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ́e Sphere; 2.2.4 Finding Point on Poincar ́e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION
3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING
3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm
4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence
5.2.3 Atmospheric Temporal Statistics
Record Nr. UNINA-9910130871403321
McAulay Alastair D.  
Hoboken, New Jersey : , : Wiley, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Military laser technology for defense : technology for revolutionizing 21st century warfare / / Alastair D. McAulay
Autore McAulay Alastair D.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2011]
Descrizione fisica 1 online resource (325 p.)
Disciplina 623.4/46
623.446
Soggetto topico Lasers - Military applications
Laser weapons
ISBN 1-283-37443-9
9786613374431
1-118-01954-7
1-118-01953-9
1-118-01955-5
Classificazione TEC019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS
1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ́e Sphere; 2.2.4 Finding Point on Poincar ́e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION
3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING
3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm
4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence
5.2.3 Atmospheric Temporal Statistics
Record Nr. UNINA-9910830703603321
McAulay Alastair D.  
Hoboken, New Jersey : , : Wiley, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui